6533b882fe1ef96bd12dabc4

RESEARCH PRODUCT

Calcification is not the Achilles'heel of cold-water corals in an acidifying ocean

Riccardo Rodolfo-metalpaPaolo MontagnaStefano AlianiMireno BorghiniSimonepietro CaneseJason M Hall-spencerA FoggoMarco MilazzoMarco TavianiFanny Houlbrèque

subject

Dissolution rateOcean Acidification International Coordination Centre (OA-ICC)TemperateIdentificationSalinityBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenAlkalinity totaltotalDesmophyllum dianthuspHRespirationTemperatureCalcification rate of calcium carbonatedissolvedLaboratory experimentCarbonate ionDeep seaPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentCarbon dioxide standard deviationTemperature water standard deviationContainers and aquaria 20 1000 L or 1 m 2Respiration rateEarth System ResearchContainers and aquaria (20-1000 L or &lt; 1 m**2)standard deviationCalcification/DissolutionPotentiometric titrationCalcite saturation statePotentiometricwaterPartial pressure of carbon dioxideCaryophyllia smithiiContainers and aquaria (20-1000 L or < 1 m**2)Dendrophyllia cornigeraFigureAragonite saturation state standard deviationBenthosCnidariaOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)SpeciesCalculated using CO2SYSfungiEvent labelDeep-seaPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationCarbonate ion standard deviationbiochemical phenomena metabolism and nutritionFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideSingle speciesCalcification DissolutionFugacity of carbon dioxide water at sea surface temperature wet airBenthic animalsoxygen

description

Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Omega ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 µatm, Omega ara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 µatm, Omega ara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 µatm, Omega ara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.

10.1594/pangaea.847763http://dx.doi.org/10.1594/PANGAEA.847763