Search results for " (IMM)"

showing 10 items of 6522 documents

Energetic costs of size and sexual signalling in a wolf spider

1998

A prerequisite for honest handicaps is that there are significant condition–dependent costs in the expression of sexual traits. In the wolf spider Hygrolycosa rubrofasciata (Ohlert), sexual signalling (drumming) is costly in terms of increased mortality. Here we investigated whether this mortality may be caused by increased energy expenditure. During sexual signalling, metabolic rate was 22 times higher than at rest and four times higher than when males were actively moving. Metabolic rate per unit mass was positively related to absolute body mass during sexual signalling but not during other activities. This positive relationship is novel to any studies of metabolic rates. Indeed, it seems…

0106 biological sciencesHygrolycosa rubrofasciataWolf spider010603 evolutionary biology01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular Biology0501 psychology and cognitive sciences050102 behavioral science & comparative psychologyComputingMilieux_MISCELLANEOUSGeneral Environmental ScienceGeneral Immunology and MicrobiologybiologyEcology[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]05 social sciencesSize dependentGeneral Medicinebiology.organism_classificationSignallingEnergy expenditureSexual selectionMetabolic ratePositive relationshipGeneral Agricultural and Biological SciencesDemography
researchProduct

Energetic reserves, leptin and testosterone: a refinement of the immunocompetence handicap hypothesis.

2007

Electronic supplementary material is available at http://dx.doi.org/10.1098/rsbl.2007.0020 or via http://www.journals.royalsoc.ac.uk.

0106 biological sciencesLeptinMalemedicine.medical_treatmentMESH : Analysis of Variance01 natural sciencesImmunocompetence handicap hypothesis[ SDV.BBM.BC ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]immunocompetence handicap hypothesis[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyMESH: AnimalsTestosteroneMESH : FinchesTestosterone0303 health sciencesSex CharacteristicsLeptinMESH : Immune ToleranceImmunosuppressionAgricultural and Biological Sciences (miscellaneous)Lipids3. Good health[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]MESH : Leptin[SDV.IMM]Life Sciences [q-bio]/ImmunologyMESH: FinchesImmunocompetenceGeneral Agricultural and Biological SciencesSex characteristicsMESH: Sex CharacteristicsResearch Articlemedicine.medical_specialtyMESH: Immune ToleranceMESH : MaleMESH: TestosteroneBiology010603 evolutionary biology03 medical and health sciencesImmune systemInternal medicineMESH: Analysis of VariancemedicineImmune ToleranceAnimals[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]030304 developmental biologyAnalysis of VarianceMESH : Sex CharacteristicsMESH : TestosteroneMESH : LipidsMESH: Leptinbiology.organism_classificationMESH: LipidsMESH: MaleEndocrinologyMESH : AnimalsFinchesTaeniopygiaHormoneBiology letters
researchProduct

Immune activation increases susceptibility to oxidative tissue damage in Zebra Finches.

2006

Summary 1The innate immune response involves the production of highly reactive molecules (reactive oxygen and nitrogen species, ROS and RNS). These toxic compounds can effectively destroy invading pathogens but can also, non-specifically, target host cells. Tissue damage caused by ROS and RNS can be substantial if the inflammatory response is overactive, potentially inducing a so-called immunopathology. 2In this study, we induced an inflammatory response in Zebra Finches by the way of a LPS injection (lipopolysaccharide of the cell wall of Escherichia coli), using as a control a group of birds injected with saline (phosphate-buffered saline). Body mass was measured both before and 24 h afte…

0106 biological sciencesLipopolysaccharidefree radicals[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyBiologymedicine.disease_cause010603 evolutionary biology01 natural sciencesimmune activation03 medical and health scienceschemistry.chemical_compoundImmune systemnitric oxideImmunopathologymedicine[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyimmunopathologyZebra finchEcology Evolution Behavior and SystematicsReactive nitrogen speciesComputingMilieux_MISCELLANEOUS030304 developmental biologyZebra Finchchemistry.chemical_classification0303 health sciencesReactive oxygen speciesInnate immune systemlipopolysaccharide[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology3. Good healthchemistryImmunology[SDV.IMM]Life Sciences [q-bio]/ImmunologyOxidative stress
researchProduct

Correlational selection on pro- and anti-inflammatory effectors.

2012

9 pages; International audience; Parasites impose a permanent threat for hosts. As a consequence, immune defenses are important for host fitness. However, the immune response can also produce self-damage and impair host fitness if not properly regulated. Effectors that up- and downregulate the immune response should, therefore, evolve in concert, and be under the action of correlational selection. To address this issue, we assessed the shape of the selection operating on pro- and anti-inflammatory effectors following an inflammatory challenge in laboratory mice. We found that selection acts on the combination of these two traits as individuals that produced large amount of pro-inflammatory …

0106 biological sciencesLipopolysaccharidesMale[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology01 natural sciencesMiceImmunopathologyDarwinian medicine[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisimmunopathologyGenetics0303 health sciencesEffectorFlow CytometryInterleukin-10Interleukin 10[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyIL-10CytokinesRegression AnalysisFemalemedicine.symptomGeneral Agricultural and Biological Sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologymedicine.drug_classInflammationBiology010603 evolutionary biologysurvivalAnti-inflammatory03 medical and health sciencesImmune systemImmunityGeneticsmedicineEscherichia coliAnimals[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologySelection GeneticEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologyIL-6[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologyevolutionary immunologyInterleukin-6inflammationImmunology[SDE.BE]Environmental Sciences/Biodiversity and Ecology[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisEvolution; international journal of organic evolution
researchProduct

Survival cost of an early immune soliciting in nature.

2009

8 pages; International audience; If immune functions confer obvious benefits to hosts, life-history theory assumes that they also induce costs, leading to trade-offs between immunity and other fitness components. However, whether substantial fitness costs are associated with immune systems in the wild is debatable, as numerous factors may influence the costs and benefits associated with immune activation. Here, we explore the survival cost of immune deployment in postfledging birds. We injected Eurasian collared dove nestlings (Streptopelia decaocto) with antigens from Escherichia coli, and examined whether this immune challenge affected survival after fledging. To assess survival, birds we…

0106 biological sciencesMESH : Escherichia coliimmune defensesMESH : Bird Diseases[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology01 natural sciencesMESH: Bird DiseasesPredationNesting BehaviorBody SizeMESH: AnimalsMESH: Nesting BehaviorEscherichia coli InfectionsMESH : Adaptation Physiological0303 health sciencesbiologyMESH: Escherichia coli[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]StreptopeliaFledgeMESH : Antigens BacterialMESH : Immunity InnateAdaptation Physiological[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE][SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMESH : Escherichia coli InfectionsMESH: Survival AnalysisMESH: Immunity InnateGeneral Agricultural and Biological Sciencessurvival.Immune activationfitness costMESH : Body SizeMESH : Nesting Behavior010603 evolutionary biologysurvivalBirds03 medical and health sciencesImmune systemAntigenImmunityGeneticsEscherichia coliAnimalsColumbidaeEcology Evolution Behavior and SystematicsMESH: Escherichia coli Infections030304 developmental biologyMESH: ColumbidaeAntigens BacterialMESH: Body SizeBird Diseasesbiology.organism_classificationMESH: Adaptation PhysiologicalSurvival AnalysisImmunity Innatefree-ranging vertebrateImmunologybacteriaMESH : AnimalsMESH : Survival AnalysisMESH : ColumbidaeMESH: Antigens BacterialFitness cost
researchProduct

Diversifying selection on MHC class I in the house sparrow (Passer domesticus).

2009

10 pages; International audience; Genes of the major histocompatibility complex (MHC) are the most polymorphic loci known in vertebrates. Two main hypotheses have been put forward to explain the maintenance of MHC diversity: pathogen-mediated selection and MHC-based mate choice. Host-parasite interactions can maintain MHC diversity via frequency-dependent selection, heterozygote advantage, and diversifying selection (spatially and/or temporally heterogeneous selection). In this study, we wished to investigate the nature of selection acting on the MHC class I across spatially structured populations of house sparrows (Passer domesticus) in France. To infer the nature of the selection, we comp…

0106 biological sciencesMESH : Gene FlowMESH: Selection (Genetics)MESH: GeographyGenes MHC Class IMESH: Genetic MarkersBalancing selectionMESH : Microsatellite Repeats[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology01 natural sciencesmicrosatellitesMESH: SparrowsMESH : Genetic MarkersMESH: AnimalsMESH: Genetic VariationMESH: Evolution MolecularGenetics0303 health scienceseducation.field_of_studyGeographybiology[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]MESH : GeographyMESH: Genes MHC Class I[ SDE.MCG ] Environmental Sciences/Global Changes[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE][SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMate choiceMESH: Stochastic ProcessesMHC class IMESH : MutationSparrowsGene FlowGenetic MarkersMESH: Mutationbalancing selection[SDE.MCG]Environmental Sciences/Global ChangesPopulationMESH : Genetic DriftMESH: Genetics Populationchemical and pharmacologic phenomenaMESH : Stochastic ProcessesMajor histocompatibility complex010603 evolutionary biologyMESH : Genes MHC Class IEvolution Molecular03 medical and health sciencesMESH : Genetic VariationMHC class IGeneticsPasser domesticusMESH : Selection (Genetics)AnimalsMESH : Evolution MolecularSelection GeneticMESH: Genetic DrifteducationAllelesMESH: Gene FlowEcology Evolution Behavior and SystematicsSelection (genetic algorithm)030304 developmental biologyLocal adaptationIsolation by distanceStochastic Processes[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologyhouse sparrowMESH: AllelesGenetic DriftGenetic Variationdiversifying selectionPasser domesticus.[ SDV.GEN.GA ] Life Sciences [q-bio]/Genetics/Animal geneticsMESH : Genetics Population[SDE.ES]Environmental Sciences/Environmental and Society[SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal geneticsGenetics PopulationEvolutionary biologyMutationbiology.proteinMESH: Microsatellite RepeatsMESH : AnimalsMESH : Sparrows[SDE.BE]Environmental Sciences/Biodiversity and EcologyMESH : Alleles[ SDE.ES ] Environmental Sciences/Environmental and SocietyMicrosatellite Repeats
researchProduct

Evolutionary conservation advice for despotic populations: habitat heterogeneity favours conflict and reduces productivity in Seychelles magpie robins

2010

Individual preferences for good habitat are often thought to have a beneficial stabilizing effect for populations. However, if individuals preferentially compete for better-quality territories, these may become hotspots of conflict. We show that, in an endangered species, this process decreases the productivity of favoured territories to the extent that differences in productivity between territories disappear. Unlike predictions from current demographic theory on site-dependent population regulation (ideal despotic distribution), we show that population productivity is reduced if resources are distributed unevenly in space. Competition for high-quality habitat can thus have detrimental con…

0106 biological sciencesMaleConservation of Natural Resourcesmedia_common.quotation_subjectPopulationEndangered speciesBiologySeychelles010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyCompetition (biology)AnimalsPasseriformeseducationProductivityResearch ArticlesEcosystemGeneral Environmental Sciencemedia_commoneducation.field_of_studyIdeal free distributionGeneral Immunology and MicrobiologyBehavior AnimalEcology010604 marine biology & hydrobiologyReproductionHabitat conservationGeneral Medicine15. Life on landBiological EvolutionSpatial heterogeneitySocial DominanceBiological dispersalFemaleGeneral Agricultural and Biological SciencesTerritoriality
researchProduct

Social immunity and the evolution of group living in insects

2015

The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide a…

0106 biological sciencesMaleInsectaMultiple forms[SDV]Life Sciences [q-bio]Group livingBiology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyHerd immunityDevelopmental psychologyHost-Parasite Interactions03 medical and health sciencesImmunitySocial groomingAnimalsSocial BehaviorEcosystemComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesBehavior AnimalEcology[SDV.BA]Life Sciences [q-bio]/Animal biologyArticlesEusocialityBiological Evolution[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate ZoologySocial systemFemaleSocial evolutionGeneral Agricultural and Biological Sciences
researchProduct

Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative family life

2020

Offspring of species with facultative family life are able to live with and without parents (i.e. to adjust to extreme changes in their social environment). While these adjustments are well understood on a phenotypic level, their genetic underpinnings remain surprisingly understudied. Investigating gene expression changes in response to parental absence may elucidate the genetic constraints driving evolutionary transitions between solitary and family life. Here, we manipulated maternal presence to observe gene expression changes in the fat body of juvenile European earwigs, an insect with facultative family life. Because parents typically protect offspring against pathogens, expression chan…

0106 biological sciencesMaleInsectaOffspringEvolution[SDV]Life Sciences [q-bio]Biology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyTranscriptome03 medical and health sciencesAnimalsGeneComputingMilieux_MISCELLANEOUS030304 developmental biologyGeneral Environmental ScienceGenetics0303 health sciencesMaternal deprivationFacultativeGeneral Immunology and MicrobiologyBehavior Animal[SDV.BA]Life Sciences [q-bio]/Animal biologyGeneral MedicinePhenotypeBiological EvolutionFamily life[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate ZoologyFemalesense organsGeneral Agricultural and Biological SciencesTranscriptomePaternal care
researchProduct

The preference and costs of sleeping under light at night in forest and urban great tits

2019

Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of dar…

0106 biological sciencesMaleLight pollutionForestsartificial light at night01 natural sciencesoxalic acidSleep debtOxalic acidParus majorPasseriformesGeneral Environmental Sciencevuorokausirytmi0303 health sciencesbiologyBehavior Animallight pollutionGeneral MedicinetalitiainenPE&RCSleep in non-human animalsPreferenceCircadian RhythmLight pollutioninternationalMAMMALSDarknessFemalekaupungistuminenGeneral Agricultural and Biological SciencesBEHAVIORenergiankulutus (aineenvaihdunta)ZoologyurbanizationAnimal Breeding and Genomics010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular Biologyuni (lepotila)03 medical and health sciencesBiointeractions and Plant HealthAnimalsCOLORBehaviourFokkerij en GenomicaCircadian rhythmsleepPHYSIOLOGYARTIFICIAL-LIGHTLighting030304 developmental biologyParusWhite (horse)BIRDSGeneral Immunology and MicrobiologyINTENSITYMEMORYUrbanizationPERFORMANCEbiology.organism_classificationvalosaasteEnergy MetabolismEnvironmental PollutionSleepArtificial light at nightALTERS
researchProduct