Search results for " 1"
showing 10 items of 12187 documents
Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.
2015
Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…
Novel Microglia Depletion Systems: A Genetic Approach Utilizing Conditional Diphtheria Toxin Receptor Expression and a Pharmacological Model Based on…
2019
Microglia are the main population of macrophage residing in the central nervous system (CNS). Depletion experiments gave important insights into the physiology and function of microglia in healthy and diseased CNS. Ablation of microglia can be achieved by application of pharmacological or genetic tools. Here, we describe two approaches to ablate microglia: an efficient genetic model that utilizes DTRMG mouse line that has diphtheria toxin receptor (DTR) expression regulated by the promoter activity of the fractalkine receptor (CX3CR1) gene, and a pharmacological model that utilizes the blocking of macrophage colony-stimulating factor 1 receptor (CSF-1R) with a blocking antibody. Both the ad…
Neuromodulatory effect of interleukin 1β in the dorsal raphe nucleus on individual differences in aggression
2021
Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patient’s families, clinicians, and the patients themselves. At the same time, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggress…
Reversal of multidrug resistance by Marsdenia tenacissima and its main active ingredients polyoxypregnanes.
2016
Abstract Ethnopharmacological relevance Multidrug resistance (MDR) of cancer is often associated with the overexpression of ATP-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated protein-1 (MRP-1) and breast cancer resistance protein (BCRP or ABCG2), in cancer cells, which facilitates the active efflux of a wide variety of chemotherapeutic drugs out of the cells. Marsdenia tenacissima is a traditional Chinese medicinal herb that has long been clinically used for treatment of cancers, particularly in combinational use with anticancer drugs. Polyoxypregnanes (POPs) are identified as main constituents of this herb, and three of them have been re…
Overview of key molecular and pharmacological targets for diabetes and associated diseases
2021
Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by c…
Drug Retention Rate and Predictive Factors of Drug Survival for Interleukin-1 Inhibitors in Systemic Juvenile Idiopathic Arthritis.
2019
Introduction: The advent of biologic agents has revolutionized therapeutic approaches in systemic juvenile idiopatic arthritis (sJIA) as their introduction has been shown to modify disease course and improve overall outcomes, particularly when initiated early. Few studies have reported the drug retention rate (DRR) of biologic drugs in JIA, and none of them has specifically investigated the DRR of interleukin (IL)-1 inhibitors on sJIA. Objectives: The primary aim of the study was to examine the overall DRR of IL-1 blockers in sJIA patients. Secondary aims of our study were to: (i) explore the influence of biologic line of treatment, adverse events (AEs), type of anti-IL-1 agent and the conc…
A Novel Open and Infectious Form of Echovirus 1.
2016
ABSTRACT One of the hallmarks of enterovirus genome delivery is the formation of an uncoating intermediate particle. Based on previous studies of mostly heated picornavirus particles, intermediate particles were shown to have externalized the innermost capsid protein (VP4) and exposed the N terminus of VP1 and to have reduced infectivity. Here, in addition to the native and intact particle type, we have identified another type of infectious echovirus 1 (E1) particle population during infection. Our results show that E1 is slightly altered during entry, which leads to the broadening of the major virion peak in the sucrose gradient. In contrast, CsCl gradient separation revealed that in addit…
Effects of the LPA1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice
2019
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in res…
Dendritic cells tip the balance towards induction of regulatory T cells upon priming in experimental autoimmune encephalomyelitis
2016
Counter-balancing regulatory mechanisms, such as the induction of regulatory T cells (Treg), limit the effects of autoimmune attack in neuroinflammation. However, the role of dendritic cells (DCs) as the most powerful antigen-presenting cells, which are intriguing therapeutic targets in this context, is not fully understood. Here, we demonstrate that conditional ablation of DCs during the priming phase of myelin-specific T cells in experimental autoimmune encephalomyelitis (EAE) selectively aborts inducible Treg (iTreg) induction, whereas generation of T helper (Th)1/17 cells is unaltered. DCs facilitate iTreg induction by creating a milieu with high levels of interleukin (IL)-2 due to a st…
Gatekeeper role of brain antigen‐presenting CD11c + cells in neuroinflammation
2015
Multiple sclerosis is the most frequent chronic inflammatory disease of the CNS. The entry and survival of pathogenic T cells in the CNS are crucial for the initiation and persistence of autoimmune neuroinflammation. In this respect, contradictory evidence exists on the role of the most potent type of antigen-presenting cells, dendritic cells. Applying intravital two-photon microscopy, we demonstrate the gatekeeper function of CNS professional antigen-presenting CD11c(+) cells, which preferentially interact with Th17 cells. IL-17 expression correlates with expression of GM-CSF by T cells and with accumulation of CNS CD11c(+) cells. These CD11c(+) cells are organized in perivascular clusters…