Search results for " Algebra"

showing 10 items of 2082 documents

Varieties of algebras with pseudoinvolution and polynomial growth

2017

Let A be an associative algebra with pseudoinvolution (Formula presented.) over an algebraically closed field of characteristic zero and let (Formula presented.) be its sequence of (Formula presented.) -codimensions. We shall prove that such a sequence is polynomially bounded if and only if the variety generated by A does not contain five explicitly described algebras with pseudoinvolution. As a consequence, we shall classify the varieties of algebras with pseudoinvolution of almost polynomial growth, i.e. varieties of exponential growth such that any proper subvariety has polynomial growth and, along the way, we shall give also the classification of their subvarieties. Finally, we shall de…

16R50; 16W50; growth; Polynomial identity; Primary: 16R10; pseudoinvolution; Secondary: 16W10Linear function (calculus)PolynomialPure mathematicspseudoinvolutionAlgebra and Number TheorySubvariety16R50growth010102 general mathematicsPolynomial identity pseudo involution codimension growthZero (complex analysis)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesPrimary: 16R10Settore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsAlgebraically closed fieldVariety (universal algebra)16W50Secondary: 16W10MathematicsLinear and Multilinear Algebra
researchProduct

Lie Algebras Generated by Extremal Elements

1999

We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.

17B05[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Non-associative algebraAdjoint representationGroup Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Graded Lie algebraCombinatoricsMathematics - Algebraic Geometry0103 physical sciences[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]FOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematics[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]20D06[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Rings and AlgebrasKilling formAffine Lie algebra[ MATH.MATH-RA ] Mathematics [math]/Rings and Algebras [math.RA]Lie conformal algebra[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Adjoint representation of a Lie algebraRings and Algebras (math.RA)17B05; 20D06010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Group TheoryJournal of Algebra
researchProduct

Introduction to Gestural Similarity in Music. An Application of Category Theory to the Orchestra

2019

Mathematics, and more generally computational sciences, intervene in several aspects of music. Mathematics describes the acoustics of the sounds giving formal tools to physics, and the matter of music itself in terms of compositional structures and strategies. Mathematics can also be applied to the entire making of music, from the score to the performance, connecting compositional structures to acoustical reality of sounds. Moreover, the precise concept of gesture has a decisive role in understanding musical performance. In this paper, we apply some concepts of category theory to compare gestures of orchestral musicians, and to investigate the relationship between orchestra and conductor, a…

18B05 18B10 16D90 03B52InformationSystems_INFORMATIONINTERFACESANDPRESENTATION(e.g.HCI)History and Overview (math.HO)MathematicsofComputing_GENERALvisual artscomputer.software_genreFuzzy logic050105 experimental psychology060404 musicgesture performance orchestral conducting category theory similarity composition visual arts interdisciplinary studies fuzzy logicinterdisciplinary studiesSimilarity (psychology)FOS: Mathematics0501 psychology and cognitive sciencesCategory Theory (math.CT)Category theoryComposition (language)similaritySettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore INF/01 - Informaticabusiness.industryMathematics - History and OverviewApplied Mathematics05 social sciencesMathematics - Category Theory06 humanities and the artsSettore MAT/04 - Matematiche ComplementariComputational Mathematicscategory theorySettore MAT/02 - AlgebraComputer Science::SoundcompositionModeling and SimulationgestureArtificial intelligencefuzzy logicorchestral conductingbusinesscomputer0604 artsMusicNatural language processingperformanceGesturecategory theory; composition; fuzzy logic; gesture; interdisciplinary studies; orchestral conducting; performance; similarity; visual arts
researchProduct

Computing the Original eBWT Faster, Simpler, and with Less Memory

2021

Mantaci et al. [TCS 2007] defined the \(\mathrm {eBWT}\) to extend the definition of the \(\mathrm {BWT}\) to a collection of strings. However, since this introduction, it has been used more generally to describe any \(\mathrm {BWT}\) of a collection of strings, and the fundamental property of the original definition (i.e., the independence from the input order) is frequently disregarded. In this paper, we propose a simple linear-time algorithm for the construction of the original \(\mathrm {eBWT}\), which does not require the preprocessing of Bannai et al. [CPM 2021]. As a byproduct, we obtain the first linear-time algorithm for computing the \(\mathrm {BWT}\) of a single string that uses …

2019-20 coronavirus outbreakSpeedupString collectionsBig BWTSettore INF/01 - InformaticaSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)String (computer science)Suffix arrayOrder (ring theory)omega-orderQuantitative Biology::GenomicsBurrows-Wheeler-TransformBurrows-Wheeler-Transform String collections SAIS Big BWT prefix-free parsing extended BWTlaw.inventionCombinatoricsprefix-free parsingSimple (abstract algebra)lawSAISSAIS algorithmIndependence (probability theory)extended BWTMathematics
researchProduct

Quantization of Poisson Lie Groups and Applications

1996

LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC ∞(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.

58B30Pure mathematicsGeneralizationPoisson distribution01 natural sciencesHarmonic analysissymbols.namesakeQuantization (physics)58F060103 physical sciences0101 mathematicsQuantumMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsPoisson algebraDiscrete mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Group (mathematics)010102 general mathematicsLie groupStatistical and Nonlinear Physics81S1017B37[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]symbols010307 mathematical physics16W30
researchProduct

Estudios sobre el establecimiento de analogías en la resolución de problemas. Analogías en resolución de problemas de ciencias: efectos del contexto,…

2014

El trabajo de investigación que se presenta se enmarca en el programa de doctorado en Didácticas Específicas de la Universitat de València, dentro del itinerario de Investigación en Didáctica de las Ciencias Experimentales. El objetivo general de la presente investigación es la transferencia analógica en resolución de problemas y los factores que afectan a ésta. Analizamos la transferencia entre problemas verbales (en esta tesis ello significa lo mismo que problemas con enunciado escrito) de estructura algebraica porque constituyen una tipología de problemas de amplísima presencia en los currículos de enseñanza secundaria, tanto de ciencias como de matemáticas. Dentro de los procesos implic…

:MATEMÁTICAS [UNESCO]resolución de problemas algebraicosdidáctica de las ciencias:FÍSICA [UNESCO]establecimiento de analogíasUNESCO::FÍSICAdidáctica de las matemáticas:PEDAGOGÍA [UNESCO]UNESCO::PEDAGOGÍAsuperficie y estructurafamiliaridadUNESCO::MATEMÁTICAS
researchProduct

On the arithmetic and geometry of binary Hamiltonian forms

2011

Given an indefinite binary quaternionic Hermitian form $f$ with coefficients in a maximal order of a definite quaternion algebra over $\mathbb Q$, we give a precise asymptotic equivalent to the number of nonequivalent representations, satisfying some congruence properties, of the rational integers with absolute value at most $s$ by $f$, as $s$ tends to $+\infty$. We compute the volumes of hyperbolic 5-manifolds constructed by quaternions using Eisenstein series. In the Appendix, V. Emery computes these volumes using Prasad's general formula. We use hyperbolic geometry in dimension 5 to describe the reduction theory of both definite and indefinite binary quaternionic Hermitian forms.

AMS : 11E39 20G20 11R52 53A35 11N45 15A21 11F06 20H10representation of integersHyperbolic geometry20H10Geometry15A2101 natural sciencesHyperbolic volume[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]11E39 20G20 11R52 53A35 11N45 15A21 11F06 20H10symbols.namesake11E390103 physical sciencesEisenstein seriesCongruence (manifolds)group of automorphs0101 mathematics20G20Quaternion11R52[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Mathematicsreduction theoryDiscrete mathematicsAlgebra and Number TheoryQuaternion algebraMathematics - Number TheorySesquilinear formta111010102 general mathematicsHamilton-Bianchi groupHermitian matrix53A35[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]11F06[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsMathematics::Differential Geometry[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Hamilton–Bianchi group11N45binary Hamiltonian formhyperbolic volume[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT]
researchProduct

An Arakelov inequality in characteristic p and upper bound of p-rank zero locus

2008

In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.

Abelian varietyAlgebra and Number TheoryStable curveCombinatoricsAlgebraic cycleMathematics - Algebraic GeometryMathematics::Algebraic Geometry14D05 (Primary) 14G25 14H10 (Secondary)Algebraic surfaceFOS: MathematicsGenus fieldAlgebraic curveAbelian groupAlgebraic Geometry (math.AG)Singular point of an algebraic varietyMathematicsJournal of Number Theory
researchProduct

Smooth structures on algebraic surfaces with cyclic fundamental group

1988

Abelian varietyAlgebraIntersection theorymedicine.medical_specialtyFundamental groupFunction field of an algebraic varietyGeneral MathematicsAlgebraic surfacemedicineSmooth structureAlgebraic geometry and analytic geometryMathematicsInventiones Mathematicae
researchProduct

Automorphisms of hyperelliptic GAG-codes

2009

Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.

Abelian varietyDiscrete mathematicsautomorphismsGroup (mathematics)Applied Mathematicsgeneralized algebraic geometry codes.Outer automorphism groupReductive groupAutomorphismTheoretical Computer ScienceCombinatoricsMathematics::Group Theorygeometric Goppa codeAlgebraic groupDiscrete Mathematics and Combinatoricsalgebraic function fieldsSettore MAT/03 - GeometriaIsomorphismfinite fieldsGeometric Goppa codesfinite fieldalgebraic function fieldHyperelliptic curvegeneralized algebraic-geometry codesMathematicsDiscrete Mathematics
researchProduct