6533b7d6fe1ef96bd12666a0
RESEARCH PRODUCT
Quantization of Poisson Lie Groups and Applications
Georges PinczonFrédéric Bidegainsubject
58B30Pure mathematicsGeneralizationPoisson distribution01 natural sciencesHarmonic analysissymbols.namesakeQuantization (physics)58F060103 physical sciences0101 mathematicsQuantumMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsPoisson algebraDiscrete mathematics[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]Group (mathematics)010102 general mathematicsLie groupStatistical and Nonlinear Physics81S1017B37[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]symbols010307 mathematical physics16W30description
LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC ∞(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.
year | journal | country | edition | language |
---|---|---|---|---|
1996-08-01 |