0000000000281859
AUTHOR
Frédéric Bidegain
Quantization of Poisson Lie Groups and Applications
LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC ∞(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.
A candidate for a noncompact quantum group
A previous letter (Bidegain, F. and Pinczon, G:Lett. Math. Phys.33 (1995), 231–240) established that the star-product approach of a quantum group introduced by Bonneau et al. can be extended to a connected locally compact semisimple real Lie group. The aim of the present Letter is to give an example of what a noncompact quantum group could be. From half of the discrete series ofSL(2,\(\mathbb{R}\)), a new type of quantum group is explicitly constructed.
Noncompact Topological Quantum Groups
A star-product construction of quantum semisimple real Lie groups is performed for the noncompact case.
A star-product approach to noncompact Quantum Groups
Using duality and topological theory of well behaved Hopf algebras (as defined in [2]) we construct star-product models of non compact quantum groups from Drinfeld and Reshetikhin standard deformations of enveloping Hopf algebras of simple Lie algebras. Our star-products act not only on coefficient functions of finite-dimensional representations, but actually on all $C^\infty$ functions, and they exist even for non linear (semi-simple) Lie groups.