Search results for " Automata"
showing 10 items of 436 documents
Pseudocomplements in sum-ordered partial semirings
2007
We study a particular way of introducing pseudocomplementation in ordered semigroups with zero, and characterise the class of those pseudocomplemented semigroups, termed g-semigroups here, that admit a Glivenko type theorem (the pseudocomplements form a Boolean algebra). Some further results are obtained for g-semirings – those sum-ordered partially additive semirings whose multiplicative part is a g-semigroup. In particular, we introduce the notion of a partial Stone semiring and show that several well-known elementary characteristics of Stone algebras have analogues for such semirings.
On a class of languages with holonomic generating functions
2017
We define a class of languages (RCM) obtained by considering Regular languages, linear Constraints on the number of occurrences of symbols and Morphisms. The class RCM presents some interesting closure properties, and contains languages with holonomic generating functions. As a matter of fact, RCM is related to one-way 1-reversal bounded k-counter machines and also to Parikh automata on letters. Indeed, RCM is contained in L-NFCM but not in L-DFCM, and strictly includes L-CPA. We conjecture that L-DFCM subset of RCM
On Horn spectra
1991
Abstract A Horn spectrum is a spectrum of a Horn sentence. We show that to solve Asser's problem, and consequently the EXPTIME = ? NEXPTIME question it suffices to consider the class of Horn spectra. We also pose the problem whether or not the generator of every Horn spectrum is a spectrum. We prove that from a negative solution of the generator problem, a negative answer for the EXPTIME = ? NEXPTIME question follows. Some other relations between the generator problem and Asser's problem are given. Finally, the relativized version of the generator problem is formulated and it is shown that it has an affirmative solution for some oracles, and a negative solution for some others.
Modeling the role of climate change on small-scale vegetation patterns in a Mediterranean basin using a Cellular Automata model
2013
Predicting vegetation response in regions of ecotone transition under a changing climate is a among grand challenges in ecohydrology. In a small basin (1.3 sq km) in Sicily, Italy, where north-facing slopes are characterized by Quercus (tree), and south-facing slopes by Opuntia ficus-indaca (evergreen perennial species drought tolerant) and grasses we use an ecohydrological Cellular-Automaton model (CATGraSS) of vegetation coexistence driven by rainfall and solar radiation with downscaled future climate to examine the role of climate change on vegetation patterns. In the model, each cell can hold a single plant type or can be bare soil. Plant competition is modeled explicitly by keeping tra…
Balance Properties and Distribution of Squares in Circular Words
2008
We study balance properties of circular words over alphabets of size greater than two. We give some new characterizations of balanced words connected to the Kawasaki-Ising model and to the notion of derivative of a word. Moreover we consider two different generalizations of the notion of balance, and we find some relations between them. Some of our results can be generalised to non periodic infinite words as well.
Hamming, Permutations and Automata
2007
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A.Ambainis and R.Freivalds that quantum finite automata with pure states can have exponentially smaller number of states than deterministic finite automata recognizing the same language. There was a never published "folk theorem" proving that quantum finite automata with mixed states are no more than superexponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We prove that there is an infinite sequence of distinct int…
Super-Exponential Size Advantage of Quantum Finite Automata with Mixed States
2008
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A.Ambainis and R.Freivalds that quantum finite automata with pure states can have exponentially smaller number of states than deterministic finite automata recognizing the same language. There was a never published "folk theorem" proving that quantum finite automata with mixed states are no more than super-exponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We use a novel proof technique based on Kolmogorov complex…
Ambainis-Freivalds’ Algorithm for Measure-Once Automata
2001
An algorithm given by Ambainis and Freivalds [1] constructs a quantum finite automaton (QFA) with O(log p) states recognizing the language Lp = {ai| i is divisible by p} with probability 1 - Ɛ , for any Ɛ > 0 and arbitrary prime p. In [4] we gave examples showing that the algorithm is applicable also to quantum automata of very limited size. However, the Ambainis-Freivalds algoritm is tailored to constructing a measure-many QFA (defined by Kondacs andWatrous [2]), which cannot be implemented on existing quantum computers. In this paper we modify the algorithm to construct a measure-once QFA of Moore and Crutchfield [3] and give examples of parameters for this automaton. We show for the lang…
Improved Constructions of Quantum Automata
2008
We present a simple construction of quantum automata which achieve an exponential advantage over classical finite automata. Our automata use $\frac{4}{\epsilon} \log 2p + O(1)$ states to recognize a language that requires p states classically. The construction is both substantially simpler and achieves a better constant in the front of logp than the previously known construction of [2]. Similarly to [2], our construction is by a probabilistic argument. We consider the possibility to derandomize it and present some preliminary results in this direction.
Coding Partitions: Regularity, Maximality and Global Ambiguity
2007
The canonical coding partition of a set of words is the finest partition such that the words contained in at least two factorizations of a same sequence belong to a same class. In the case the set is not uniquely decipherable, it partitions the set into one unambiguous class and other parts that localize the ambiguities in the factorizations of finite sequences. We firstly prove that the canonical coding partition of a regular set contains a finite number of regular classes. We give an algorithm for computing this partition. We then investigate maximality conditions in a coding partition and we prove, in the regular case, the equivalence between two different notions of maximality. As an ap…