Search results for " Bayesian"
showing 10 items of 124 documents
Spatial Bayesian Modeling Applied to the Surveys of Xylella fastidiosa in Alicante (Spain) and Apulia (Italy)
2020
The plant-pathogenic bacterium Xylella fastidiosa was first reported in Europe in 2013, in the province of Lecce, Italy, where extensive areas were affected by the olive quick decline syndrome, caused by the subsp. pauca. In Alicante, Spain, almond leaf scorch, caused by X. fastidiosa subsp. multiplex, was detected in 2017. The effects of climatic and spatial factors on the geographic distribution of X. fastidiosa in these two infested regions in Europe were studied. The presence/absence data of X. fastidiosa in the official surveys were analyzed using Bayesian hierarchical models through the integrated nested Laplace approximation (INLA) methodology. Climatic covariates were obtained from …
A modeling approach to evaluate the influence of spatial and temporal structure of an epidemiological surveillance network on the intensity of phytos…
2017
National audience
A Bayesian Reconstruction of a Historical Population in Finland, 1647–1850
2020
This article provides a novel method for estimating historical population development. We review the previous literature on historical population time-series estimates and propose a general outline to address the well-known methodological problems. We use a Bayesian hierarchical time-series model that allows us to integrate the parish-level data set and prior population information in a coherent manner. The procedure provides us with model-based posterior intervals for the final population estimates. We demonstrate its applicability by estimating the long-term development of Finlands population from 1647 onward and simultaneously place the country among the very few to have an annual popula…
Reti bayesiane per l’indentificazione delle migliori strategie di gestione idraulica di un bacino urbano
2011
On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data
2021
AbstractBackgroundDuring the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, throug…
Use of hierarchical Bayesian framework in MTS studies to model different causes and novel possible forms of acquired MTS
2015
Abstract: An integrative account of MTS could be cast in terms of hierarchical Bayesian inference. It may help to highlight a central role of sensory (tactile) precision could play in MTS. We suggest that anosognosic patients, with anesthetic hemisoma, can also be interpreted as a form of acquired MTS, providing additional data for the model.
An adaptive probabilistic approach to goal-level imitation learning
2010
Imitation learning has been recognized as a promising technique to teach robots advanced skills. It is based on the idea that robots could learn new behaviors by observing and imitating the behaviors of other skilled actors. We propose an adaptive probabilistic graphical model which copes with three core issues of any imitative behavior: observation, representation and reproduction of skills. Our model, Growing Hierarchical Dynamic Bayesian Network (GHDBN), is hierarchical (i.e. able to characterize structured behaviors at different levels of abstraction), and growing (i.e. skills are learned or updated incrementally - and at each level of abstraction - every time a new observation sequence…
Using recursive Bayesian estimation for matching GPS measurements to imperfect road network data
2010
Map-matching refers to the process of projecting positioning measurements to a location on a digital road network map. It is an important element of intelligent transportation systems (ITS) focusing on driver assistance applications, on emergency and incident management, arterial and freeway management, and other applications. This paper addresses the problem of map-matching in the applications characterized by imperfect map quality and restricted computational resources - e.g. in the context of community-based ITS applications. Whereas a number of map-matching methods are available, often these methods rely on topological analysis, thereby making them sensitive to the map inaccuracies. In …
An adaptive probabilistic graphical model for representing skills in PbD settings
2010
Learning Bayesian Metanetworks from Data with Multilevel Uncertainty
2006
Managing knowledge by maintaining it according to dynamic context is among the basic abilities of a knowledge-based system. The two main challenges in managing context in Bayesian networks are the introduction of contextual (in)dependence and Bayesian multinets. We are presenting one possible implementation of a context sensitive Bayesian multinet-the Bayesian Metanetwork, which implies that interoperability between component Bayesian networks (valid in different contexts) can be also modelled by another Bayesian network. The general concepts and two kinds of such Metanetwork models are considered. The main focus of this paper is learning procedure for Bayesian Metanetworks.