Search results for " Bioreactor"
showing 10 items of 149 documents
A new plant wide modelling approach for the reduction of greenhouse Gas emission from wastewater treatment plants
2017
Recent studies about greenhouse gas (GHG) emissions show that sewer collection systems and wastewater treatment plants (WWTPs) are anthropogenic GHG potential sources. Therefore, they contribute to the climate change and air pollution. This increasing interest towards climate change has led to the development of new tools for WWTP design and management. This paper presents the first results of a research project aiming at setting-up an innovative mathematical model platform for the design and management of WWTPs. More specifically, the study presents the project’s strategy aimed at setting-up a plant-wide mathematical model which can be used as a tool for reducing/controlling GHG from WWTP.…
Carbon and nutrient biological removal in a University of Cape Town membrane bioreactor: Analysis of a pilot plant operated under two different C/N r…
2016
Abstract The effect of the carbon-to-nitrogen (C/N) ratio variation in a University of Cape Town Membrane bioreactor (UCT-MBR) was investigated. The experimental campaign was divided into two phases, each characterized by a different C/N ratio (namely, 10 and 5, Phase I and Phase II, respectively). The UCT-MBR pilot plant was analysed in terms of carbon and nutrients removal, biomass respiratory activity, activated sludge features and membrane fouling. The results highlighted that the nutrients removal was significantly affected by the decrease of the C/N ratio during the Phase II. The biological carbon removal was also affected by the low C/N value during the Phase II. Indeed, the average …
An innovative respirometric method to assess the autotrophic active fraction: Application to an alternate oxic-anoxic MBR pilot plant
2016
An innovative respirometric method was applied to evaluate the autotrophic active fraction in an alternate anoxic/oxic membrane bioreactor (MBR) pilot plant. The alternate cycle (AC) produces a complex microbiological environment that allows the development of both autotrophic and heterotrophic species in one reactor. The present study aimed to evaluate autotrophic and heterotrophic active fractions and highlight the effect of different aeration/non aeration ratios in a AC-MBR pilot plant using respirometry. The results outlined that the autotrophic active fraction values were consistent with the nitrification efficiency and FISH analyses, which suggests its usefulness for estimating the ni…
Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors
2016
Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at gen- erating osteochondral constructs, i.e., a biphasic construct in which one side is cartilagi- nous in nature, while the other is osseous. We next develop a general computat…
PLLA Scaffold with Gradient pore size in microphysiological tissue system bioreactor for Osteochondral regeneration
2015
Cartilage and bone tissues in the joints are intimately linked and form the osteochondral unit. A better understanding of both disease and regenerative processes of bone and cartilage requires the study of both tissues together, as part of the osteochondral unit to account for their mutual interactions. However, the production of scaffolds for osteochondral tissue regeneration is a challenging task, since scaffolds must mimic the differents morphologies of cartilage and bone. Thermally Induced Phase Separation (TIPS) is one of the most adaptable techniques to produce porous scaffold for Tissue Engineering applications. A wide range of morphologies in terms of both pore size and distribution…
Sub-critical filtration conditions of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system: The effect of gas sparging i…
2012
A submerged anaerobic MBR demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was operated using municipal wastewater at high levels of mixed liquor total solids (MLTS) (above 22gL -1). A modified flux-step method was applied to assess the critical flux (J C) at different gas sparging intensities. The results showed a linear dependency between J C and the specific gas demand per unit of membrane area (SGD m). J C ranged from 12 to 19LMH at SGD m values of between 0.17 and 0.5Nm 3h -1m -2, which are quite low in comparison to aerobic MBR. Long-term trials showed that the membranes operated steadily at fluxes close to the est…
Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale
2011
The aim of this study was to assess the effect of several operational variables on both biological and separation process performance in a submerged anaerobic membrane bioreactor pilot plant that treats urban wastewater. The pilot plant is equipped with two industrial hollow-fibre ultrafiltration membrane modules (PURON¿ Koch Membrane Systems, 30m 2 of filtration surface each). It was operated under mesophilic conditions (at 33°C), 70days of SRT, and variable HRT ranging from 20 to 6h. The effects of the influent COD/SO 4-S ratio (ranging from 2 to 12) and the MLTS concentration (ranging from 6 to 22gL -1) were also analysed. The main performance results were about 87% of COD removal, efflu…
Gas-lift anaerobic dynamic membrane bioreactors for high strength synthetic wastewater treatment: Effect of biogas sparging velocity and HRT on treat…
2016
Abstract A laboratory scale external anaerobic dynamic membrane bioreactor (AnDMBR) treating high strength wastewater (influent COD ≈ 20 g/L) was operated to assess the effect of biogas sparging velocity (GSV) and hydraulic retention time (HRT) on removal efficiency and dynamic membrane (DM) filtration characteristics. An increase in GSV resulted in a decrease in DM filtration resistance. DM or cake layer was identified as the main contributor to the total filtration resistance. The external AnDMBR achieved over 99% COD removal efficiency irrespective of the GSV. The results showed that the DM formation process proceeded until a stable cake layer was reached. Reducing of HRT resulted in an …
The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater
2014
The objective of this study was to evaluate the operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater (UWW) at ambient temperature (ranging from 17 to 33 degrees C). To this aim, energy consumption, methane production, and sludge handling and recycling to land were evaluated. The results revealed that optimising specific gas demand with respect to permeate volume (SGDp) and sludge retention time (for given ambient temperature conditions) is essential to maximise energy savings (minimum energy demand: 0.07 kW h m(-3)). Moreover, low/moderate sludge productions were obtained (minimum value: 0.16 kg TSS kg(-1) CODRemoved), which further enhanced the…
Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for mod…
2015
[EN] The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consump…