6533b856fe1ef96bd12b2712

RESEARCH PRODUCT

Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors

Manuela Teresa RaimondiGioacchino ConoscentiGiovanna D'ursoLaura IannettiRocky S. TuanElena CutrìRiccardo GottardiPaolo ZuninoPaolo Zunino

subject

Genetics and Molecular Biology (all)0301 basic medicineComputer scienceDistributed computinglcsh:Medicine02 engineering and technologyMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)BiochemistryOxygenPLLA bioreactor computational modelMedicine and Health SciencesFluid dynamicslcsh:ScienceThroughput (business)Flow RateMultidisciplinaryPhysicsSimulation and ModelingMedicine (all)Classical MechanicsVolumetric flow rateChemistryConnective TissuePhysical SciencesAnatomyResearch ArticleChemical ElementsCell Physiology0206 medical engineeringMicrofluidicschemistry.chemical_elementFluid MechanicsResearch and Analysis MethodsContinuum Mechanics03 medical and health sciencesBioreactorFluidicsFluid Flowlcsh:RBiology and Life SciencesBiological TransportFluid DynamicsCell BiologyConstruct (python library)020601 biomedical engineeringCell MetabolismOxygenMetabolismBiological TissueCartilage030104 developmental biologyAgricultural and Biological Sciences (all)chemistryFlow (mathematics)lcsh:QPorous medium

description

Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at gen- erating osteochondral constructs, i.e., a biphasic construct in which one side is cartilagi- nous in nature, while the other is osseous. We next develop a general computational approach to model the microfluidics of a multi-chamber, interconnected system that may be applied to human-on-chip devices. This objective requires overcoming several chal- lenges at the level of computational modeling. The main one consists of addressing the multi-physics nature of the problem that combines free flow in channels with hindered flow in porous media. Fluid dynamics is also coupled with advection-diffusion-reaction equa- tions that model the transport of biomolecules throughout the system and their interaction with living tissues and C constructs. Ultimately, we aim at providing a predictive approach useful for the general organ-on-chip community. To this end, we have developed a lumped parameter approach that allows us to analyze the behavior of multi-unit bioreactor systems with modest computational effort, provided that the behavior of a single unit can be fully characterized.

10.1371/journal.pone.0162774http://dx.doi.org/10.1371/journal.pone.0162774