Search results for " COMPUTATION"
showing 10 items of 1478 documents
Variable time amplitude amplification and quantum algorithms for linear algebra problems
2012
Quantum amplitude amplification is a method of increasing a success probability of an algorithm from a small epsilon>0 to Theta(1) with less repetitions than classically. In this paper, we generalize quantum amplitude amplification to the case when parts of the algorithm that is being amplified stop at different times. We then apply the new variable time amplitude amplification to give two new quantum algorithms for linear algebra problems. Our first algorithm is an improvement of Harrow et al. algorithm for solving systems of linear equations. We improve the running time of the algorithm from O(k^2 log N) to O(k log^3 k log N) where k is the condition number of the system of equations. …
Error identities for variational problems with obstacles
2017
Аппроксимации по мере: задача Дирихле, универсальность и гипотеза Римана
2021
Аппроксимации по мере используются для решения асимптотической задачи Дирихле на произвольных открытых множествах, а также для демонстрации того обстоятельства, что многие функции, в том числе дзета-функция Римана, универсальны в смысле сходимости по мере. Выдвигается предположение о связи этих результатов с гипотезой Римана. Библиография: 12 наименований.
Efficient generation of restricted growth words
2013
A length n restricted growth word is a word w=w"1w"2...w"n over the set of integers where w"1=0 and each w"i, i>1, lies between 0 and the value of a word statistics of the prefix w"1w"2...w"i"-"1 of w, plus one. Restricted growth words simultaneously generalize combinatorial objects as restricted growth functions, staircase words and ascent or binary sequences. Here we give a generic generating algorithm for restricted growth words. It produces a Gray code and runs in constant average time provided that the corresponding statistics has some local properties.
Removing the saturation assumption in Bank-Weiser error estimator analysis in dimension three
2020
International audience; We provide a new argument proving the reliability of the Bank-Weiser estimator for Lagrange piecewise linear finite elements in both dimension two and three. The extension to dimension three constitutes the main novelty of our study. In addition, we present a numerical comparison of the Bank-Weiser and residual estimators for a three-dimensional test case.
Adjacency matrices of random digraphs: singularity and anti-concentration
2017
Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let $J$ be a subset of vertices of $G$ with $|J|\approx n/d$. Let $\delta_i$ be the indicator of the event that the vertex $i$ is connected to $J$ and define $\delta = (\delta_1, …
Restricted compositions and permutations: from old to new Gray codes
2011
Any Gray code for a set of combinatorial objects defines a total order relation on this set: x is less than y if and only if y occurs after x in the Gray code list. Let @? denote the order relation induced by the classical Gray code for the product set (the natural extension of the Binary Reflected Gray Code to k-ary tuples). The restriction of @? to the set of compositions and bounded compositions gives known Gray codes for those sets. Here we show that @? restricted to the set of bounded compositions of an interval yields still a Gray code. An n-composition of an interval is an n-tuple of integers whose sum lies between two integers; and the set of bounded n-compositions of an interval si…
Statistics-preserving bijections between classical and cyclic permutations
2012
Recently, Elizalde (2011) [2] has presented a bijection between the set C"n"+"1 of cyclic permutations on {1,2,...,n+1} and the set of permutations on {1,2,...,n} that preserves the descent set of the first n entries and the set of weak excedances. In this paper, we construct a bijection from C"n"+"1 to S"n that preserves the weak excedance set and that transfers quasi-fixed points into fixed points and left-to-right maxima into themselves. This induces a bijection from the set D"n of derangements to the set C"n"+"1^q of cycles without quasi-fixed points that preserves the weak excedance set. Moreover, we exhibit a kind of discrete continuity between C"n"+"1 and S"n that preserves at each s…
Promotion et Développement d'un Master Erasmus Mundus - L'Exemple du VIBOT
2011
Cet article decrit l’offre de formation a l’internationale proposee au Centre Universitaire Condorcet du Creusot (Universite de Bourgogne) dans le domaine de la vision par ordinateur et de la robotique. Il presente l’organisation particuliere de ces formations et les actions de support mises en place pour en assurer la perennite.
Mathematical modelling of the feed rod shape in floating zone silicon crystal growth
2017
Abstract A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution …