Search results for " COMPUTATION"
showing 10 items of 1478 documents
Gabor systems and almost periodic functions
2017
Abstract Inspired by results of Kim and Ron, given a Gabor frame in L 2 ( R ) , we determine a non-countable generalized frame for the non-separable space AP 2 ( R ) of the Besicovic almost periodic functions. Gabor type frames for suitable separable subspaces of AP 2 ( R ) are constructed. We show furthermore that Bessel-type estimates hold for the AP norm with respect to a countable Gabor system using suitable almost periodic norms of sequences.
Data for: Analytical induced force solution in conducting cylindrical bodies and rings due to a rotating finite permanent magnet
2019
Implementation of analytical current density solution in numerical calculations using Wolfram Mathematica software. THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOVE
The planar two-body problem for spheroids and disks
2021
We outline a new method suggested by Conway (2016) for solving the two-body problem for solid bodies of spheroidal or ellipsoidal shape. The method is based on integrating the gravitational potential of one body over the surface of the other body. When the gravitational potential can be analytically expressed (as for spheroids or ellipsoids), the gravitational force and mutual gravitational potential can be formulated as a surface integral instead of a volume integral, and solved numerically. If the two bodies are infinitely thin disks, the surface integral has an analytical solution. The method is exact as the force and mutual potential appear in closed-form expressions, and does not invol…
Hierarchical-ACA DBEM for Anisotropic Three-Dimensional Time-Harmonic Fracture Mechanics
2012
A hierarchical BEM solver for the analysis of three-dimensional anisotropic time-harmonic fracture mechanics problems is presented. A thorough investigation on the relations and interactions between the numerically computed anisotropic fundamental solutions and the algorithm used to approximate the blocks of the hierarchical matrix, namely Adaptive Cross Approximation, is carried out leading to the employed computational strategy. The use of the hierarchical matrices and iterative solvers is proved as an effective technique for speeding up the solution procedure and reducing the required memory storage in time-harmonic three-dimensional anisotropic fracture mechanics problems.
COMPUTATIONAL FLUID DYNAMICS OF TYPE B AORTIC DISSECTION
2014
Type B aortic dissection (AoD) is a disease connected to high blood load on the aortic wall and to a reduced aortic wall resistance. Nowadays, prognosis on type B AoD results to be particularly difficult with an high incidence of patients treated with medical therapy which manifest complication connected with dissection and which should have been treated with surgical repair immediately. This work aims to study those haemodynamical and morphological proprieties of dissected aorta, which can influence the progression or stability of type B AoD. Computational fluid-dynamic analyses were performed on twenty-five patients with type B AoD, whose nine presented an aneurysm evolution and sixteen p…
New indefinite integrals from a method using Riccati equations
2018
ABSTRACTAn earlier method for obtaining indefinite integrals of special function from the second-order linear equations which define them has been reformulated in terms of Riccati equations, which ...
Binary Hamming codes and Boolean designs
2021
AbstractIn this paper we consider a finite-dimensional vector space $${\mathcal {P}}$$ P over the Galois field $${\text {GF}}(2),$$ GF ( 2 ) , and the family $${\mathcal {B}}_k$$ B k (respectively, $${\mathcal {B}}_k^*$$ B k ∗ ) of all the k-sets of elements of $$\mathcal {P}$$ P (respectively, of $${\mathcal {P}}^*= {\mathcal {P}} \setminus \{0\}$$ P ∗ = P \ { 0 } ) summing up to zero. We compute the parameters of the 3-design $$({\mathcal {P}},{\mathcal {B}}_k)$$ ( P , B k ) for any (necessarily even) k, and of the 2-design $$({\mathcal {P}}^{*},{\mathcal {B}}_k^{*})$$ ( P ∗ , B k ∗ ) for any k. Also, we find a new proof for the weight distribution of the binary Hamming code. Moreover, we…
Energy dissipative solutions to the Kobayashi-Warren-Carter system
2017
In this paper we study a variational system of two parabolic PDEs, called the Kobayashi-Warren-Carter system, which models the grain boundary motion in a polycrystal. The focus of the study is the existence of solutions to this system which dissipate the associated energy functional. We obtain existence of this type of solutions via a suitable approximation of the energy functional with Laplacians and an extra regularization of the weighted total variation term of the energy. As a byproduct of this result, we also prove some $\Gamma$-convergence results concerning weighted total variations and the corresponding time-dependent cases. Finally, the regularity obtained for the solutions togethe…
Linear and cyclic radio k-labelings of trees
2007
International audience; Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two distinct vertices x and y, where dG(x,y) is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this p…
Indefinite integrals of products of special functions
2016
ABSTRACTA method is given for deriving indefinite integrals involving squares and other products of functions which are solutions of second-order linear differential equations. Several variations of the method are presented, which applies directly to functions which obey homogeneous differential equations. However, functions which obey inhomogeneous equations can be incorporated into the products and examples are given of integrals involving products of Bessel functions combined with Lommel, Anger and Weber functions. Many new integrals are derived for a selection of special functions, including Bessel functions, associated Legendre functions, and elliptic integrals. A number of integrals o…