6533b85bfe1ef96bd12ba13c
RESEARCH PRODUCT
Linear and cyclic radio k-labelings of trees
Olivier TogniMustapha KchikechRiadh Khennoufasubject
Applied Mathematics010102 general mathematicsGraph theory[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]Astrophysics::Cosmology and Extragalactic Astrophysics0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Span (engineering)01 natural sciencesUpper and lower boundsCombinatoricsGraph theory[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]IntegerRadio channel assignment010201 computation theory & mathematicsCyclic and linear radio k-labelingMetric (mathematics)Path (graph theory)Discrete Mathematics and CombinatoricsOrder (group theory)0101 mathematicsMSC 05C15 05C78ConnectivityMathematicsdescription
International audience; Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two distinct vertices x and y, where dG(x,y) is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this paper, linear and cyclic radio k-labeling numbers of paths, stars and trees are studied. For the path Pn of order n ≤ k+1, we completely determine the cyclic and linear radio k-labeling numbers. For 1 ≤ k ≤ n−2, a new improved lower bound for the linear radio k-labeling number is presented. Moreover, we give the exact value of the linear radio k-labeling number of stars and we present an upper bound for the linear radio k-labeling number of trees.
year | journal | country | edition | language |
---|---|---|---|---|
2007-01-01 |