0000000000726470

AUTHOR

Mustapha Kchikech

Approximation Algorithms for Multicoloring Planar Graphs and Powers of Square and Triangular Meshes

A multicoloring of a weighted graph G is an assignment of sets of colors to the vertices of G so that two adjacent vertices receive two disjoint sets of colors. A multicoloring problem on G is to find a multicoloring of G. In particular, we are interested in a minimum multicoloring that uses the least total number of colors. The main focus of this work is to obtain upper bounds on the weighted chromatic number of some classes of graphs in terms of the weighted clique number. We first propose an 11/6-approximation algorithm for multicoloring any weighted planar graph. We then study the multicoloring problem on powers of square and triangular meshes. Among other results, we show that the infi…

research product

Frequency Assignment and Multicoloring Powers of Square and Triangular Meshes

The static frequency assignment problem on cellular networks can be abstracted as a multicoloring problem on a weighted graph, where each vertex of the graph is a base station in the network, and the weight associated with each vertex represents the number of calls to be served at the vertex. The edges of the graph model interference constraints for frequencies assigned to neighboring stations. In this paper, we first propose an algorithm to multicolor any weighted planar graph with at most $\frac{11}{4}W$ colors, where W denotes the weighted clique number. Next, we present a polynomial time approximation algorithm which garantees at most 2W colors for multicoloring a power square mesh. Fur…

research product

Linear and cyclic radio k-labelings of trees

International audience; Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two distinct vertices x and y, where dG(x,y) is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this p…

research product

Radio k-Labelings for Cartesian Products of Graphs

International audience; Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two vertices x and y, where dG(x,y) is the distance between x and y in G. The radio k-chromatic number is the minimum of max{f(x)−f(y):x,y ∈ V(G)} over all radio k-labelings f of G. In this paper we present the radio k-labeling for the Cartesian pro…

research product

Paths Coloring Algorithms in Mesh Networks

In this paper, we will consider the problem of coloring directed paths on a mesh network. A natural application of this graph problem is WDM-routing in all-optical networks. Our main result is a simple 4-approximation algorithm for coloring line-column paths on a mesh. We also present sharper results when there is a restriction on the path lengths. Moreover, we show that these results can be extended to toroidal meshes and to line-column or column-line paths.

research product