6533b85bfe1ef96bd12bad28

RESEARCH PRODUCT

Radio k-Labelings for Cartesian Products of Graphs

Olivier TogniMustapha KchikechRiadh Khennoufa

subject

Square tilingGraph labelingradio k-labelingradio channel assignmentAntipodal point0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Span (engineering)01 natural sciencesUpper and lower boundsradio numberCombinatoricssymbols.namesakeIntegerCartesian productDiscrete Mathematics and CombinatoricsChromatic scale0101 mathematicsantipodal numberMathematicsDiscrete mathematicsApplied Mathematics010102 general mathematicsGraph theory[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]Cartesian productGraph theory[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]010201 computation theory & mathematicsCellular networksymbolsHypercubeMSC 05C15 05C78Graph product

description

International audience; Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two vertices x and y, where dG(x,y) is the distance between x and y in G. The radio k-chromatic number is the minimum of max{f(x)−f(y):x,y ∈ V(G)} over all radio k-labelings f of G. In this paper we present the radio k-labeling for the Cartesian product of two graphs, providing upper bounds on the radio k-chromatic number for this product. These results help to determine upper and lower bounds for radio k-chromatic numbers of hypercubes and grids. In particular, we show that the ratio of upper and lower bounds of the radio number and the radio antipodal number of the square grid is asymptotically [3/2].

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-00655720