0000000000370848

AUTHOR

Riadh Khennoufa

showing 5 related works from this author

The radio antipodal and radio numbers of the hypercube

2011

International audience; A radio k-labeling of a connected graph G is an assignment f of non negative integers to the vertices of G such that |f(x) − f(y)| \ge k + 1 − d(x, y), for any two vertices x and y, where d(x, y) is the distance between x and y in G. The radio antipodal number is the minimum span of a radio (diam(G) − 1)-labeling of G and the radio number is the minimum span of a radio (diam(G))-labeling of G. In this paper, the radio antipodal number and the radio number of the hypercube are determined by using a generalization of binary Gray codes.

generalized binary Gray code[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]graph labeling[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM][INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]radio numberradio antipodal number
researchProduct

Multilevel Bandwidth and Radio Labelings of Graphs

2008

This paper introduces a generalization of the graph bandwidth parameter: for a graph G and an integer k ≤ diam(G), the k-level bandwidth Bk(G)of G is defined by Bk(G) = minγ max{|γ(x)-γ(y)|-d(x, y)+1 : x, y ∈ V (G), d(x, y) ≤ k}, the minimum being taken among all proper numberings γ of the vertices of G. We present general bounds on Bk(G) along with more specific results for k = 2 and the exact value for k = diam(G). We also exhibit relations between the k-level bandwidth and radio k-labelings of graphs from which we derive a upper bound for the radio number of an arbitrary graph.

CombinatoricsDiscrete mathematicsGraph bandwidthGraph powerFrequency assignmentBandwidth (signal processing)Bound graphUpper and lower boundsGraphMathematics
researchProduct

Linear and cyclic radio k-labelings of trees

2007

International audience; Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two distinct vertices x and y, where dG(x,y) is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this p…

Applied Mathematics010102 general mathematicsGraph theory[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]Astrophysics::Cosmology and Extragalactic Astrophysics0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Span (engineering)01 natural sciencesUpper and lower boundsCombinatoricsGraph theory[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]IntegerRadio channel assignment010201 computation theory & mathematicsCyclic and linear radio k-labelingMetric (mathematics)Path (graph theory)Discrete Mathematics and CombinatoricsOrder (group theory)0101 mathematicsMSC 05C15 05C78ConnectivityMathematics
researchProduct

Radio k-Labelings for Cartesian Products of Graphs

2005

International audience; Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that |f(x)−f(y)| ≥ k+1−dG(x,y), for any two vertices x and y, where dG(x,y) is the distance between x and y in G. The radio k-chromatic number is the minimum of max{f(x)−f(y):x,y ∈ V(G)} over all radio k-labelings f of G. In this paper we present the radio k-labeling for the Cartesian pro…

Square tilingGraph labelingradio k-labelingradio channel assignmentAntipodal point0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Span (engineering)01 natural sciencesUpper and lower boundsradio numberCombinatoricssymbols.namesakeIntegerCartesian productDiscrete Mathematics and CombinatoricsChromatic scale0101 mathematicsantipodal numberMathematicsDiscrete mathematicsApplied Mathematics010102 general mathematicsGraph theory[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]Cartesian productGraph theory[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]010201 computation theory & mathematicsCellular networksymbolsHypercubeMSC 05C15 05C78Graph product
researchProduct

Total and fractional total colourings of circulant graphs

2008

International audience; In this paper, the total chromatic number and the fractional total chromatic number of circulant graphs are studied. For cubic circulant graphs we give upper bounds on the fractional total chromatic number and for 4-regular circulant graphs we find the total chromatic number for some cases and we give the exact value of the fractional total chromatic number in most cases.

Discrete mathematicsCirculant graphMathematics::CombinatoricsFractional total colouring010102 general mathematics[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]01 natural sciencesTotal colouringTheoretical Computer ScienceCombinatoricsMSC 05C15010201 computation theory & mathematicsComputer Science::Discrete MathematicsGraph colouringDiscrete Mathematics and CombinatoricsPhysics::Accelerator PhysicsChromatic scale0101 mathematicsCirculant matrixValue (mathematics)MathematicsDiscrete Mathematics
researchProduct