Search results for " Cannabinoid"

showing 10 items of 163 documents

Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum

2009

Background and purpose Although it is well accepted that cannabinoids modulate intestinal motility by reducing cholinergic neurotransmission mediated by CB(1) receptors, it is not known whether the endocannabinoids are involved in more complex circuits and if they interact with other systems. The aim of the present study was to examine possible interactions between cannabinoid CB(1) receptors and purines in the control of spontaneous contractility of longitudinal muscle in mouse ileum. Experimental approach The mechanical activity of longitudinally oriented ileal segments from mice was recorded as isometric contractions. Key results The selective CB(1) receptor agonist, N-(2-chloroethyl)5,8…

AgonistMalemedicine.medical_specialtyP2Y receptormedicine.drug_classmedicine.medical_treatmentCB(1) receptorArachidonic AcidsP2 receptorBiologyIn Vitro TechniquesSettore BIO/09 - FisiologiaMiceAdenosine TriphosphateReceptor Cannabinoid CB1IleumInternal medicinemedicineAnimalsReceptorP2X receptors: enteric nervous systemcholinergic transmissionPharmacologypurineDose-Response Relationship DrugPurinergic receptorcannabinoidReceptor antagonistAdenosine receptorResearch PapersBiomechanical PhenomenaATPMice Inbred C57BLEndocrinologyCannabinoidGastrointestinal MotilityProtein Binding
researchProduct

Identification and determination of synthetic cannabinoids in herbal products by dry film attenuated total reflectance-infrared spectroscopy.

2017

A new procedure has been developed for the identification and quantitative determination of synthetic cannabinoids in illicit herbal preparations. The methodology is based on the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurement of sample extracts with 2-propanol drying 5µL of the extracts onto the ATR crystal. The qualitative identification was carried out on the 2-propanol extract after identification of the herbal matrix, followed by its subtraction and using a cut-off criterion of 75%. Quantitative determination was made by univariate calibration using the absorbance of the band located at 1520cm-1 of the spectrum. Four different cannabin…

AnalyteChromatographyChemistryCannabinoidsPlant Extracts010401 analytical chemistryInfrared spectroscopy01 natural sciences0104 chemical sciencesAnalytical ChemistryMatrix (chemical analysis)Absorbance03 medical and health sciences0302 clinical medicineAttenuated total reflectionSynthetic cannabinoidsCalibrationSpectroscopy Fourier Transform InfraredmedicineCalibration030216 legal & forensic medicineFourier transform infrared spectroscopymedicine.drugTalanta
researchProduct

Cannabis, cerebro y adicción

2005

El compuesto psicoactivo de la cannabis sátiva, el í-9-tetrahidrocannabinol, ejerce sus efectos sobre el sistema nervioso central a través del receptor cannabinoide CB1. La localización presináptica del receptor CB I sugiere una función de modulación de la liberación de neurotransmisores a través de la denominada señalización retrógrada. El THC actúa en el sistema de recompensa cerebral de una manera muy similar a la de otras sustancias adictivas, incluyendo tanto la capacidad de generar tolerancia y síndro­ me de abstinencia como la interacción con otros sistema de neurotransmisión implica­ dos en el fenómeno de la recompensa. El consumo de cannabis provoca, al menos de manera transitoria,…

Associated mental disordersCannabis adicción sistema cannabinoide endógeno trastornos mentales asociados pers¬pectiva evolucionista:PSICOLOGÍA::Psicofarmacología [UNESCO]Endocannabinoid systemPers­pectiva evolucionistaEvolutionary perspective:PSICOLOGÍA [UNESCO]AddictionUNESCO::PSICOLOGÍAUNESCO::PSICOLOGÍA::PsicofarmacologíaSistema cannabinoide endógenoAdicciónTrastornos mentales asociadosCannabis
researchProduct

Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothal…

2015

Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamine…

AstrocitosNeurobiologia del desenvolupamentAmidohidrolasasCannabinoid receptorCarbamatos:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Intracellular Signaling Peptides and Proteins::Apoptosis Regulatory Proteins::Caspases [Medical Subject Headings]:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Differentiation::Neurogenesis [Medical Subject Headings]medicine.medical_treatment:Chemicals and Drugs::Carbohydrates::Monosaccharides::Hexoses::Glucose [Medical Subject Headings]Apoptosis:Phenomena and Processes::Physiological Phenomena::Body Constitution::Body Weights and Measures::Body Size::Body Weight [Medical Subject Headings]chemistry.chemical_compound:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Membrane Proteins::Receptors Cell Surface::Receptors G-Protein-Coupled::Receptors Cannabinoid::Receptor Cannabinoid CB1 [Medical Subject Headings]0302 clinical medicine:Chemicals and Drugs::Organic Chemicals::Carboxylic Acids::Acids Acyclic::Carbamates [Medical Subject Headings]Fatty acid amide hydrolaseReceptor cannabinoide CB1:Organisms::Eukaryota::Animals [Medical Subject Headings]FAAHGliosishealth care economics and organizations:Chemicals and Drugs::Nucleic Acids Nucleotides and Nucleosides::Nucleosides::Deoxyribonucleosides::Deoxyuridine::Bromodeoxyuridine [Medical Subject Headings]:Chemicals and Drugs::Lipids::Glycerides::Triglycerides [Medical Subject Headings]Original Research0303 health sciencesNeurogenesisBenzamidas:Chemicals and Drugs::Polycyclic Compounds::Steroids::Cholestanes::Cholestenes::Cholesterol [Medical Subject Headings]Endocannabinoid systemEtanolaminas3. Good healthEndocannabinoides:Chemicals and Drugs::Lipids::Fatty Acids::Fatty Acids Unsaturated::Fatty Acids Monounsaturated::Oleic Acids [Medical Subject Headings]CannabinoidesMicroglíalipids (amino acids peptides and proteins)medicine.symptomColesterol:Chemicals and Drugs::Organic Chemicals::Hydrocarbons::Terpenes::Cannabinoids [Medical Subject Headings]:Chemicals and Drugs::Lipids::Fatty Acids::Palmitic Acids [Medical Subject Headings]psychological phenomena and processesProliferación celularmedicine.medical_specialtyCerebroNeurogenesiseducationBiologyBromodesoxiuridina:Anatomy::Nervous System::Neuroglia::Microglia [Medical Subject Headings]Triglicéridoslcsh:RC321-571Ácidos oléicosRatas03 medical and health sciencesCellular and Molecular NeuroscienceInternal medicineHipocampomedicineCaspasa 3:Anatomy::Nervous System::Central Nervous System::Brain::Limbic System::Hippocampus [Medical Subject Headings]:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Growth Processes::Cell Proliferation [Medical Subject Headings]lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyPalmitoylethanolamide:Chemicals and Drugs::Chemical Actions and Uses::Pharmacologic Actions::Molecular Mechanisms of Pharmacological Action::Neurotransmitter Agents::Endocannabinoids [Medical Subject Headings]:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases::Amidohydrolases [Medical Subject Headings]Cannabinoids:Anatomy::Cells::Neuroglia::Astrocytes [Medical Subject Headings]Peso corporalEnergy metabolism:Anatomy::Nervous System::Central Nervous System::Brain [Medical Subject Headings]:Anatomy::Nervous System::Central Nervous System::Brain::Limbic System::Hypothalamus [Medical Subject Headings]URB597:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Death [Medical Subject Headings]:Diseases::Pathological Conditions Signs and Symptoms::Pathologic Processes::Gliosis [Medical Subject Headings]:Chemicals and Drugs::Organic Chemicals::Amines::Amino Alcohols::Ethanolamines [Medical Subject Headings]Muerte celular:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Death::Apoptosis [Medical Subject Headings]:Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Rodentia::Muridae::Murinae::Rats [Medical Subject Headings]EndocrinologyURB597chemistryGliosisnervous systemGlucosaCannabinoidEnergy Metabolism:Chemicals and Drugs::Organic Chemicals::Amides::Benzamides [Medical Subject Headings]HipotálamoÁcidos palmíticos030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Cannabinoid CB1 receptor activation modulates spontaneous contractile activity in mouse ileal longitudinal muscle.

2007

The purpose of the present study was to examine whether cannabinoid receptor agonists influence spontaneous contractile activity of longitudinal muscle in mouse ileum in vitro. Isolated segments of mouse ileum displayed spontaneous contractions with an amplitude and frequency of about 300 mg and 30 cpm, respectively. The endocannabinoid anandamide (1-100 microM), the selective cannabinoid CB(1) receptor agonist, ACEA (0.1 microM-10 microM), but not the selective cannabinoid CB(2) receptor agonist, JWH 133 (0.1 microM-10 microM), reduced in a concentration-dependent manner the spontaneous mechanical activity. The inhibitory effect consisted in a decrease of the mean amplitude of longitudinal…

AtropineMaleAgonistmedicine.medical_specialtyCB1 receptorIndolesCannabinoid receptorPolyunsaturated Alkamidesmedicine.drug_classmedicine.medical_treatmentMouse ileumArachidonic AcidsTetrodotoxinIn Vitro TechniquesDepolarization-induced suppression of inhibitionHexamethoniumReceptor Cannabinoid CB2Micechemistry.chemical_compoundPiperidinesReceptor Cannabinoid CB1IleumInternal medicineCannabinoid Receptor ModulatorsmedicineAnimalsCannabinoidPharmacologyDose-Response Relationship DrugCannabinoidsChemistryMuscle SmoothCannabinoid Receptor AgonistsReceptor antagonistEndocannabinoid systemAcetylcholineMice Inbred C57BLNG-Nitroarginine Methyl EsterEndocrinologyApaminJWH-133PyrazolesCannabinoidRimonabantSpontaneous mechanical activityEndocannabinoidsMuscle Contraction
researchProduct

Asperuloside Enhances Taste Perception and Prevents Weight Gain in High-Fat Fed Mice

2021

Asperuloside is an iridoid glycoside found in many medicinal plants that has produced promising anti-obesity results in animal models. In previous studies, three months of asperuloside administration reduced food intake, body weight, and adipose masses in rats consuming a high fat diet (HFD). However, the mechanisms by which asperuloside exerts its anti-obesity properties were not clarified. Here, we investigated homeostatic and nutrient-sensing mechanisms regulating food intake in mice consuming HFD. We confirmed the anti-obesity properties of asperuloside and, importantly, we identified some mechanisms that could be responsible for its therapeutic effect. Asperuloside reduced body weight …

Blood GlucoseLeptinMalecannabinoid (CB) receptor 10301 basic medicineTastePro-Opiomelanocortinfood intakeEndocrinology Diabetes and MetabolismAdipose tissueWeight Gainnutrient-sensing mechanismslcsh:Diseases of the endocrine glands. Clinical endocrinologyCyclopentane MonoterpenesEnergy homeostasisMiceEndocrinology0302 clinical medicineGlucosidesWeight lossInsulinasperuloside; cannabinoid (CB) receptor 1; CD36; FFAR1-4; food intake; nutrient-sensing mechanisms; TAS1R2-3; weight lossReceptorOriginal ResearchLeptindigestive oral and skin physiologyTaste PerceptionGhrelinTAS1R2-3Ghrelinmedicine.symptommedicine.medical_specialtyHypothalamusBiologyDiet High-Fatasperuloside03 medical and health sciencesInternal medicinemedicineAnimalsPyranslcsh:RC648-665Body WeightFFAR1-4030104 developmental biologyEndocrinologyAnti-Obesity Agentsweight lossEnergy IntakeCD36Weight gain030217 neurology & neurosurgery
researchProduct

Acute activation of cannabinoid receptors by anandamide reduces gastrointestinal motility and improves postprandial glycemia in mice.

2015

International audience; The endocannabinoid system (ECS) is associated with an alteration of glucose homeostasis dependent on cannabinoid receptor-1 (CB1R) activation. However, very little information is available concerning the consequences of ECS activation on intestinal glucose absorption. Mice were injected intraperitoneally with anandamide, an endocannabinoid binding both CB1R and CB2R. We measured plasma glucose and xylose appearance after oral loading, gastrointestinal motility, and glucose transepithelial transport using the everted sac method. Anandamide improved hyperglycemia after oral glucose charge whereas glucose clearance and insulin sensitivity were impaired, pointing out so…

Blood GlucoseMaleIndolesCannabinoid receptorMESH : Piperidines[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEndocrinology Diabetes and Metabolismmedicine.medical_treatmentMESH: EndocannabinoidsMESH : PyrazolesMESH : Receptors CannabinoidMicechemistry.chemical_compoundPiperidinesMESH : IndolesMESH: Receptors CannabinoidMESH: Reverse Transcriptase Polymerase Chain ReactionMESH : Arachidonic AcidsGlucose homeostasisMESH: Gastrointestinal TransitMESH: AnimalsReceptors CannabinoidMESH: IndolesReverse Transcriptase Polymerase Chain ReactionMESH : RatsMESH : Reverse Transcriptase Polymerase Chain ReactionAnandamidePostprandial PeriodEndocannabinoid systemMESH : Gastrointestinal MotilityPostprandialMESH: PiperidinesMESH: Postprandial PeriodMESH: Gastrointestinal MotilityRimonabantMESH : EndocannabinoidsMESH : Gastrointestinal Transitmedicine.medical_specialtyMESH: RatsPolyunsaturated AlkamidesMESH : MaleArachidonic AcidsMESH : Mice Inbred C57BLMESH : Rats WistarMESH: Mice Inbred C57BLInternal medicineMESH : MiceInternal MedicinemedicineAnimalsMESH: Arachidonic AcidsMESH : Polyunsaturated AlkamidesRats WistarGastrointestinal TransitMESH: MiceGastric emptyingMESH: Polyunsaturated AlkamidesGlucose transporterMESH: Rats WistarMESH : Blood GlucoseMESH: MaleRatsMice Inbred C57BL[SDV.AEN] Life Sciences [q-bio]/Food and NutritionEndocrinologychemistryHyperglycemiaMESH : HyperglycemiaMESH: Blood GlucosePyrazolesMESH : AnimalsCannabinoidMESH : Postprandial PeriodGastrointestinal MotilityMESH: Hyperglycemia[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH: PyrazolesEndocannabinoids
researchProduct

Different modulatory effect of the synthetic cannabinoid WIN55,212-2 on tumor cell migration.

2015

MicroRNAs are small non-coding regulatory molecules exerting pleiotropic action in different biological processes such as proliferation, differentiation, apoptosis, migration and metastasis. Deregulation of miRNA expression has been observed in various cancers, and accumulating data suggest that miRNAs can display an oncogenic, antioncogenic or an ambiguous behavior in relationship to tumor environment. In a previous research we showed that the synthetic cannabinoid WIN55,212-2 is able to reduce the migratory activity of osteosarcoma MG63 cells analyzed by means of wound healing assay. So we undertook a study to evaluate the biochemical mechanism through which WIN plays this action. To this…

Breast cancerEMT in cancer cellsosteosarcomaBreast cancer; osteosarcoma; cannabinoids; miRNAs; EMT in cancer cellscannabinoidmiRNA
researchProduct

Plasma membrane and lysosomal localization of CB1 cannabinoid receptor are dependent on lipid rafts and regulated by anandamide in human breast cance…

2005

AbstractIn this report we show, by confocal analysis of indirect immunofluorescence, that the type-1 cannabinoid receptor (CB1R), which belongs to the family of G-protein-coupled receptors, is expressed on the plasma membrane in human breast cancer MDA-MB-231 cells. However, a substantial proportion of the receptor is present in lysosomes. We found that CB1R is associated with cholesterol- and sphyngolipid-enriched membrane domains (rafts). Cholesterol depletion by methyl-β-cyclodextrin (MCD) treatment strongly reduces the flotation of the protein on the raft-fractions (DRM) of sucrose density gradients suggesting that CB1 raft-association is cholesterol dependent. Interestingly binding of …

CB1 receptorCannabinoid receptorMESH: Membrane MicrodomainsMESH: Receptor Cannabinoid CB1Biochemistrychemistry.chemical_compoundRaftsMESH: Cholesterol0302 clinical medicineReceptor Cannabinoid CB1Structural BiologyReceptorLipid raft0303 health sciencesChemistrybeta-CyclodextrinsAnandamideEndocannabinoid system3. Good healthCell biologyCholesterollipids (amino acids peptides and proteins)AgonistMESH: beta-CyclodextrinsMESH: Cell Line TumorPolyunsaturated Alkamidesmedicine.drug_classBiophysicsBreast NeoplasmsArachidonic Acids03 medical and health sciencesMembrane MicrodomainsCell Line TumorGeneticsmedicineMESH: Arachidonic AcidsHumansMolecular Biology030304 developmental biologyG protein-coupled receptorMESH: HumansMESH: Polyunsaturated AlkamidesCell Membrane[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAnandamideCell BiologyCaveolin 1LysosomesIntracellular traffickingMESH: Breast Neoplasms030217 neurology & neurosurgeryMESH: Cell MembraneMESH: LysosomesEndocannabinoids
researchProduct

Evidence for a modulatory role of cannabinoids on the excitatory NANC neurotransmission in mouse colon

2007

Abstract It is well accepted that endogenous cannabinoids and CB1 receptors are involved in the regulation of smooth muscle contractility and intestinal motility, through a mechanism mainly related to reduction of acetylcholine release from cholinergic nerve endings. Because, few data exist on a possible modulatory action of the cannabinoid agents on the non-adrenergic non-cholinergic (NANC) excitatory and inhibitory neurotransmission, the aim of the present study was to investigate the effects of cannabinoid drugs on the NANC responses elicited by electrical field stimulation (EFS) in the circular muscle of mouse proximal colon. Colonic contractions were monitored as changes in endoluminal…

CB1 receptorIndolesCannabinoid receptormedicine.medical_treatmentSynaptic TransmissionSettore BIO/09 - FisiologiaEnteric Nervous SystemReceptor Cannabinoid CB2Micechemistry.chemical_compoundPiperidinesReceptor Cannabinoid CB1Fatty acid amide hydrolaseCannabinoid receptor type 2musculoskeletal neural and ocular physiologyAnandamideSmooth muscle contractionRimonabantAgonistmedicine.medical_specialtyColonPolyunsaturated Alkamidesmedicine.drug_classMorpholinesNeuromuscular JunctionArachidonic AcidsIn Vitro TechniquesNaphthalenesTachykininsInternal medicineCannabinoid Receptor ModulatorsIntestinal motilitymedicineAnimalsCannabinoidReceptors TachykininPharmacologyDose-Response Relationship DrugCannabinoidsExcitatory Postsynaptic PotentialsNANC relaxationURB597Electric StimulationBenzoxazinesMice Inbred C57BLEndocrinologyInhibitory Postsynaptic PotentialschemistryPyrazolesNANC contractionCannabinoidGastrointestinal MotilityEndocannabinoidsPharmacological Research
researchProduct