Search results for " Cannabinoid"
showing 10 items of 163 documents
Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor
2014
Brain mitochondrial activity is centrally involved in the central control of energy balance. When studying mitochondrial functions in the brain, however, discrepant results might be obtained, depending on the experimental approaches. For instance, immunostaining experiments and biochemical isolation of organelles expose investigators to risks of false positive and/or false negative results. As an example, the functional presence of cannabinoid type 1 (CB1) receptors on brain mitochondrial membranes (mtCB1) was recently reported and rapidly challenged, claiming that the original observation was likely due to artifact results. Here, we addressed this issue by directly comparing the procedures…
Different expression of PPARs in WIN-treated cells: the game of roles
2012
Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor.
2012
Allosteric modulation of G-protein–coupled receptors represents a key goal of current pharmacology. In particular, endogenous allosteric modulators might represent important targets of interventions aimed at maximizing therapeutic efficacy and reducing side effects of drugs. Here we show that the anti-inflammatory lipid lipoxin A 4 is an endogenous allosteric enhancer of the CB 1 cannabinoid receptor. Lipoxin A 4 was detected in brain tissues, did not compete for the orthosteric binding site of the CB 1 receptor (vs. 3 H-SR141716A), and did not alter endocannabinoid metabolism (as opposed to URB597 and MAFP), but it enhanced affinity of anandamide at the CB1 receptor, thereby potentiating …
The complex modulation of lysosomal degradation pathways by cannabinoid receptors 1 and 2
2015
The two main receptors of the endocannabinoid system, cannabinoid receptors 1 (CB1R) and 2 (CB2R), were described in the early 1990s. Since then, different physiological functions have been revealed that are linked to the activity of these two G-protein-coupled receptors. CB1R and CB2R activities influence signal cascades, which are known to play a role in the regulation of the cellular "self-digestion" process called autophagy. A variety of these signaling pathways are integrated by the mammalian target of rapamycin complex 1 (mTORC1) that acts as an inhibitor of autophagy. Others, like AMP-activated protein kinase dependent signaling pathway, are able to bypass mTORC1 to modulate the auto…
Apoptosis induced in HepG2 cells by the synthetic cannabinoid WIN: involvement of the transcription factor PPARgamma.
2008
It has recently been shown that cannabinoids induce growth inhibition and apoptosis in different tumour cell lines. In the current study, the effects of WIN 55,212-2 (WIN), a synthetic and potent cannabinoid receptor agonist, are investigated in hepatoma HepG2 cells and a possible signal transduction pathway is proposed. In these cells, WIN induces a clear apoptotic effect which was accompanied by up-regulation of the death-signalling factors Bax, Bcl-X(S), t-Bid and down-regulation of the survival factors survivin, phospho-AKT, Hsp72 and Bcl-2. Moreover, WIN-induced apoptosis is associated with JNK/p38 MAPK pathway activation and mitochondrial depolarisation demonstrated by a cytofluorimet…
The Endocannabinoid System Promotes Astroglial Differentiation by Acting on Neural Progenitor Cells
2006
Endocannabinoids exert an important neuromodulatory role via presynaptic cannabinoid CB1receptors and may also participate in the control of neural cell death and survival. The function of the endocannabinoid system has been extensively studied in differentiated neurons, but its potential role in neural progenitor cells remains to be elucidated. Here we show that the CB1receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase are expressed, bothin vitroandin vivo, in postnatal radial glia (RC2+cells) and in adult nestin type I (nestin+GFAP+) neural progenitor cells. Cell culture experiments show that CB1receptor activation increases progenitor proliferation and differ…
The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)).
2012
Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased be…
Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis.
2011
Abstract Cannabinoid CB1 receptors (CB1Rs) regulate the neurodegenerative damage of experimental autoimmune encephalomyelitis (EAE) and of multiple sclerosis (MS). The mechanism by which CB1R stimulation exerts protective effects is still unclear. Here we show that pharmacological activation of CB1Rs dampens the tumor necrosis factor α (TNFα)-mediated potentiation of striatal spontaneous glutamate-mediated excitatory postsynaptic currents (EPSCs), which is believed to cogently contribute to the inflammation-induced neurodegenerative damage observed in EAE mice. Furthermore, mice lacking CB1Rs showed a more severe clinical course and, in parallel, exacerbated alterations of sEPSC duration af…
Subsynaptic Distribution, Lipid Raft Targeting and G Protein-Dependent Signalling of the Type 1 Cannabinoid Receptor in Synaptosomes from the Mouse H…
2021
Numerous studies have investigated the roles of the type 1 cannabinoid receptor (CB1) in glutamatergic and GABAergic neurons. Here, we used the cell-type-specific CB1 rescue model in mice to gain insight into the organizational principles of plasma membrane targeting and Gαi/o protein signalling of the CB1 receptor at excitatory and inhibitory terminals of the frontal cortex and hippocampus. By applying biochemical fractionation techniques and Western blot analyses to synaptosomal membranes, we explored the subsynaptic distribution (pre-, post-, and extra-synaptic) and CB1 receptor compartmentalization into lipid and non-lipid raft plasma membrane microdomains and the signalling properties.…
Neuron-type specific cannabinoid-mediated G protein signalling in mouse hippocampus
2013
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron-type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA-CB1-KO mice) or cortical glutamatergic neurons (Glu-CB1-KO mice). Compared to their wild-type littermates, Glu-CB1-KO displayed a small decrease of CB1 mRNA amount, immunoreactivity…