Search results for " Catalyst"

showing 10 items of 292 documents

DFT insights into the oxygen-assisted selective oxidation of benzyl alcohol on manganese dioxide catalysts

2020

Abstract The reactivity pattern of the MnO2 catalyst in the selective aerobic oxidation of benzyl alcohol is assessed by density functional theory (DFT) analysis of adsorption energies and activation barriers on a model Mn4O8 cluster. DFT calculations predict high reactivity of defective Mn(IV) sites ruling a surface redox mechanism, L-H type, involving gas-phase oxygen. Bare and promoted (i.e., CeOx and FeOx) MnOx materials with high surface exposure of Mn(IV) sites were synthesized to assess kinetic and mechanistic issues of the selective aerobic oxidation of benzyl alcohol on real catalysts (T, 333–363 K). According to DFT predictions, the experimental study shows: i) comparable activity…

inorganic chemicalsInorganic chemistrychemistry.chemical_elementAlcoholManganese010402 general chemistry01 natural sciencesRedoxCatalysisInorganic Chemistrychemistry.chemical_compoundAdsorptionBenzyl alcoholMaterials ChemistryReactivity (chemistry)Physical and Theoretical ChemistryReaction mechanismBenzoic acidDFT analysi010405 organic chemistryActive siteorganic chemicalsMnO2 catalyst0104 chemical scienceschemistrySettore CHIM/03 - Chimica Generale E InorganicaBenzyl alcoholActive sites; Benzyl alcohol; DFT analysis; MnO; 2; catalyst; Reaction mechanism; Selective oxidationSelective oxidation
researchProduct

DFT modelling of oxygen adsorption on the Ag-doped LaMnO3 (001) surface

2019

This study was partly financed by the State Education Development Agency of the Republic of Latvia via the Latvian State Scholarship (A.A.) and Latvia-Ukraine Project (Grant LV-UA/2018/2 to E.K.). The work of T.I. is performed under the state assignment of IGM SB RAS. Also, this research was partly supported by the Ministry of Education and Science of the Republic of Kazakhstan in the framework of the scientific and technology Program BR05236795 ‘‘Development of Hydrogen Energy Technologies in the Republic of Kazakhstan’’. The authors thank M. Sokolov for technical assistance and valuable suggestions.

inorganic chemicalsMaterials scienceAg catalystchemistry.chemical_element02 engineering and technologySolid oxide fuel cells01 natural sciences7. Clean energyElectric chargeOxygenlaw.inventionoxygen adsorptionAdsorptionAb initio quantum chemistry methodslaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryRedistribution (chemistry)Electrical and Electronic EngineeringLaMnO3010302 applied physicsab initio calculationsDoping021001 nanoscience & nanotechnologyCondensed Matter PhysicsCathodeElectronic Optical and Magnetic MaterialschemistryPhysical chemistryDensity functional theory0210 nano-technologyJournal of Electronic Materials
researchProduct

Studies of structural composition distribution heterogeneity in ethylene/1-hexene copolymers using thermal fractionation technique (SSA)

2005

Abstract Investigations into the compositional heterogeneity of ethylene/1-hexene copolymers obtained with various zirconocene/MAO catalysts, either homogeneous or supported on inorganic carriers such as a complex of magnesium chloride with tetrahydrofuran or methyl alcohol, were conducted. The dependence between metallocene structure, as well as catalyst immobilization, and the compositional heterogeneity of the related products was investigated. It was found that the heterogeneity of copolymers is determined by the metallocene catalyst structure. The amount of peaks on the DSC thermograms of copolymers and their division increase with the increase of bulkiness of the ligand in the catalyt…

inorganic chemicalsMaterials scienceEthyleneMagnesiumchemistry.chemical_elementPost-metallocene catalystCondensed Matter PhysicsCatalysischemistry.chemical_compoundchemistryChemical engineeringPolymer chemistryCopolymerPhysical and Theoretical ChemistryZiegler–Natta catalystInstrumentationMetalloceneTetrahydrofuranThermochimica Acta
researchProduct

Effect of hydrogen on the ethylene polymerization process over Ziegler-Natta catalysts supported on MgCl2(THF)2. I. Studies of the chain-transfer rea…

2000

The effect of hydrogen on the molecular weight of polyethylene obtained over vanadium catalysts (based on VCl4 and VOCl3) supported on MgCl2(THF)2 was studied and the results were compared to those obtained for similar titanium catalysts. It was confirmed that the dependencies of the transfer reaction on the hydrogen concentration are a half-order in all investigated systems. However, the transition metal of the catalytic site affects the ratio of the transfer rate with hydrogen to the propagation rate (ktr,H/kp) and the results showed that hydrogen is a more effective agent of polyethylene molecular weight control in vanadium-based systems as compared to the titanium catalyst. © 2000 John …

inorganic chemicalsPolymers and PlasticsHydrogenInorganic chemistrychemistry.chemical_elementVanadiumChain transferGeneral ChemistryPolyethyleneSurfaces Coatings and FilmsCatalysischemistry.chemical_compoundTransition metalchemistryMaterials ChemistryZiegler–Natta catalystTitaniumJournal of Applied Polymer Science
researchProduct

Nature of activating effect of two-step polymerization of propylene

1999

The prepolymerization effect on propylene polymerization in the presence of a TiCl 3 -based catalyst, modified by di-n-buthyl ether, was studied. The influence of prepolymerization on the electron spin resonance spectra and morphology of the catalyst, as well as the properties and the morphology of both prepolymer and regular polymerization products, was investigated. The polymer morphology was evaluated through scanning electron microscopy, polymer bulk density, and particle size distribution. Some evidence of the enhancement effect of prepolymerization on the catalyst activity and stereospecificity was obtained. No influence from prepolymerization was observed on molecular weight and its …

inorganic chemicalsPolypropylenechemistry.chemical_classificationPolymers and PlasticsScanning electron microscopeorganic chemicalsGeneral ChemistryPolymerSurfaces Coatings and FilmsCatalysischemistry.chemical_compoundCrystallinitychemistryChemical engineeringPolymerizationPolymer chemistryMaterials Chemistryheterocyclic compoundsZiegler–Natta catalystPrepolymerJournal of Applied Polymer Science
researchProduct

Nanolayered Cobalt-Molybdenum Sulfides as Highly Chemo- and Regioselective Catalysts for the Hydrogenation of Quinoline Derivatives

2018

[EN] Herein, a general protocol for the preparation of a broad range of valuable N-heterocyclic products by hydrogenation of quinolines and related N-heteroarenes is described. Interestingly, the catalytic hydrogenation of the N-heteroarene ring is chemoselectively performed when other facile reducible functional groups, including alkenes, ketones, cyanides, carboxylic acids, esters, and amides, are present. The key to successful catalysis relies on the use of a nanolayered cobalt-molybdenum sulfide catalyst hydrothermally synthesized from earth-abundant metal precursors. This heterogeneous system displays a tunable composition of phases that allows for catalyst regeneration. Its catalytic …

inorganic chemicalsSulfidechemistry.chemical_element010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysisCatalysisMetalchemistry.chemical_compoundQUIMICA ORGANICAChemo-/regioselective hydrogenationN-heterocycleschemistry.chemical_classificationHeterogeneous catalysis010405 organic chemistryQuinolineRegioselectivityGeneral ChemistryCombinatorial chemistry0104 chemical sciencesCo-Mo-S catalystschemistryMolybdenumvisual_artvisual_art.visual_art_mediumQuinolinesCobalt
researchProduct

Bifunctional Acid-Base Catalysis

2011

Acid-base catalysis with bifunctional catalysts is a very prominent catalytic strategy in both small-molecule organocatalysts as well as enzyme catalysis. In both worlds, small-molecule catalysts and enzymatic catalysis, a variety of different general acids or hydrogen bond donors are used. In this chapter, important parallels between small molecule catalysts and enzymes are discussed, and a comparison is also made to the emerging field of frustrated Lewis pair catalysis.

inorganic chemicalschemistry.chemical_compoundchemistryHydrogen bondTetrahedral carbonyl addition compoundOxyanion holeBifunctionalCombinatorial chemistryFrustrated Lewis pairBifunctional catalystCatalysisEnzyme catalysis
researchProduct

Direct arylation of heteroaromatic compounds with congested, functionalised aryl bromides at low palladium/triphosphane catalyst loading.

2011

International audience; A new ferrocenyl triphosphane ligand associated to palladium was found to be an efficient catalyst for the direct coupling of highly congested, functionalised aryl bromides with a variety of heteroarenes. These coupling reactions can generally be performed by using a low-loading (0.1-0.5 mol%) of the catalyst. The present protocol tolerates important and useful functional groups, which allows for further elaboration into more sophisticated heterocyclic molecules. The straightforward arylation of heteroaromatic compounds with congested ortho-substituted aryl bromides may permit further convergent syntheses of diverse ligands, biologically active molecules and molecula…

inorganic chemicalschemistry.chemical_element010402 general chemistry01 natural sciencesCatalysisCoupling reactionCatalysis[ CHIM.CATA ] Chemical Sciences/Catalysischemistry.chemical_compoundMoleculeOrganic chemistryEfficient catalystaryl bromidesheterocycles010405 organic chemistryChemistryLigandArylOrganic Chemistryferrocenyl polyphosphaneGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysispalladium0104 chemical sciencesC[BOND]H activationTriphosphanePalladium
researchProduct

Lignin-based activated carbon-supported metal oxide catalysts in lactic acid production from glucose

2021

In this study, heterogeneous biomass-based activated carbon-supported metal oxide catalysts were prepared and tested for lactic acid production from glucose in aqueous solution. Activated carbons were produced from hydrolysis lignin by chemical (ZnCl2) or steam activation and modified with a nitric acid treatment and Sn, Al, and Cr chlorides to obtain carbon-based metal oxide catalysts. The modification of the carbon support by nitric acid treatment together with Sn and Al oxides led to an increase in lactic acid yield. The highest lactic acid yield (42%) was obtained after 20 minutes at 180 °C with the Sn/Al (5/2.5 wt.%) catalyst on steam-activated carbon treated by nitric acid. Reusabilit…

inorganic chemicalsmaitohappobiomasskemialliset reaktiotheterogeneous catalystlactic acidfood and beveragesmetal oxidecomplex mixturesglukoosikatalyytitkatalyysiaktiivihiilioksiditkemian tekniikkaactivated carbonbiomassa (teollisuus)aqueous solutionmuuntaminen
researchProduct

Palladium supported on cross-linked imidazolium network on silica as highly sustainable catalysts for the Suzuki reaction

2013

ionic liquidspalladium catalystcatalysi
researchProduct