Search results for " Circuits"
showing 10 items of 187 documents
A Novel Solution for the Elimination of Mode Switching in Pump-Controlled Single-Rod Cylinders
2020
This paper concerns the stability issue of pump-controlled single-rod cylinders, known as mode switching. First, a review of the topic is provided. Thereafter, the most recently proposed solution for the elimination of mode switching is investigated and shown to result in unstable behavior under certain operating conditions. A theoretical analysis is provided demonstrating the underlying mechanisms of this behavior. Based on the analysis, a novel control strategy is proposed and investigated numerically. Proper operation and stability are demonstrated for a wide range of operating conditions, including situations under which the most recently proposed solution results in unstable behavior a…
Heat Pump Induction Motor Faults Caused by Soft Starter Topology — Case Study
2021
This paper presents a case study of electrical machine faults, emerging in heat pump systems. In Nordic countries, heat pumps have been gaining popularity during the past years and have become one of the leading ways of heating in households and smaller public buildings. Although not a very complicated setup, the devices used are still prone to unexpected failures, especially if wrongly chosen, installed or maintained. The paper presents a study conducted on five real-life cases with very similar outcomes and failure modes. The setup of the systems is explained, faults are listed and presented, causes of the faults including modeling and measurement data are provided. The suggestions are gi…
High-Performance Biocomputing in Synthetic Biology-Integrated Transcriptional and Metabolic Circuits
2019
Biocomputing uses molecular biology parts as the hardware to implement computational devices. By following pre-defined rules, often hard-coded into biological systems, these devices are able to process inputs and return outputs-thus computing information. Key to the success of any biocomputing endeavor is the availability of a wealth of molecular tools and biological motifs from which functional devices can be assembled. Synthetic biology is a fabulous playground for such purpose, offering numerous genetic parts that allow for the rational engineering of genetic circuits that mimic the behavior of electronic functions, such as logic gates. A grand challenge, as far as biocomputing is concer…
Interhemispheric inhibition is dynamically regulated during action observation
2016
International audience; It is now well established that the motor system plays a pivotal role in action observation and that the neurophysiological processes underlying perception and action overlaps. However, while various experiments have shown a specific facilitation of the contralateral motor cortex during action observation, no information is available concerning the dynamics of interhemispheric interactions. The aim of the present study was, therefore, to assess interhemispheric inhibition during the observation of others' actions. We designed a transcranial magnetic stimulation (TMS) experiment in which we measured both corticospinal excitability and interhemispheric inhibition, this…
Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations
2020
Theta oscillations play a major role in temporarily defining the hippocampal rate code by translating behavioral sequences into neuronal representations. However, mechanisms constraining phase timing and cell-type-specific phase preference are unknown. Here, we employ computational models tuned with evolutionary algorithms to evaluate phase preference of individual CA1 pyramidal cells recorded in mice and rats not engaged in any particular memory task. We applied unbiased and hypothesis-free approaches to identify effects of intrinsic and synaptic factors, as well as cell morphology, in determining phase preference. We found that perisomatic inhibition delivered by complementary populations…
Synthetic biology: Engineered stable ecosystems
2017
International audience; Co-culture of bacterial cells engineered with quorum-sensing and self-lysis circuits allows coupled oscillatory dynamics and stable states, opening the way to engineered microbial ecosystems with targeted dynamics and extending gene circuits to the ecosystem level.
Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice
2017
AbstractChemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in t…
Modulating Neuronal Competition Dynamics in the Dentate Gyrus to Rejuvenate Aging Memory Circuits.
2015
The neural circuit mechanisms underlying the integration and functions of adult-born dentate granule cell (DGCs) are poorly understood. Adult-born DGCs are thought to compete with mature DGCs for inputs to integrate. Transient genetic overexpression of a negative regulator of dendritic spines, Kruppel-like factor 9 (Klf9), in mature DGCs enhanced integration of adult-born DGCs and increased NSC activation. Reversal of Klf9 overexpression in mature DGCs restored spines and activity and reset neuronal competition dynamics and NSC activation, leaving the DG modified by a functionally integrated, expanded cohort of age-matched adult-born DGCs. Spine elimination by inducible deletion of Rac1 in …
Distributed Adaptive Control for Asymptotically Consensus Tracking of Uncertain Nonlinear Systems With Intermittent Actuator Faults and Directed Comm…
2019
In this article, we investigate the output consensus tracking problem for a class of high-order nonlinear systems with unknown parameters, uncertain external disturbances, and intermittent actuator faults. Under the directed topology conditions, a novel distributed adaptive controller is proposed. The common time-varying trajectory is allowed to be totally unknown by part of subsystems. Therefore, the assumption on the linearly parameterized trajectory signal in most literature is no longer needed. To achieve the relaxation, extra distributed parameter estimators are introduced in all subsystems. Besides, to handle the actuator faults occurring at possibly infinite times, a new adaptive com…
Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex
2002
Objective: To investigate the modulatory effect of a subthreshold low frequency repetitive transcranial magnetic stimulation (rTMS) train on motor cortex excitability. Methods: The study consisted of two separate experiments. Subjects received a 10 min long subthreshold 1Hz rTMS train. In the first experiment, (single pulse paradigm), cortical excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) before and after the rTMS train. In the second experiment, a paired pulse paradigm was employed. Results: Corticospinal excitability, as measured by the MEP amplitude, was reduced by the rTMS train (experiment 1), with a significant effect lasting for about 10 min a…