Search results for " Classification"

showing 10 items of 1043 documents

Remarks on (Q, P, Y)-Summing Operators

2003

Abstract unavailable at this time... Mathematics Subject Classification (1991): 47B10. Key words: Summing operators; injective tensor product. Quaestiones Mathematicae 26(2003), 97-103

AlgebraPure mathematicsMathematics (miscellaneous)Tensor productMathematics Subject ClassificationKey (cryptography)Injective functionMathematicsQuaestiones Mathematicae
researchProduct

Computer simulations for bioequivalence trials: Selection of analyte in BCS class II and IV drugs with first-pass metabolism, two metabolic pathways …

2018

A semi-physiological two compartment pharmacokinetic model with two active metabolites (primary (PM) and secondary metabolites (SM)) with saturable and non-saturable pre-systemic efflux transporter, intestinal and hepatic metabolism has been developed. The aim of this work is to explore in several scenarios which analyte (parent drug or any of the metabolites) is the most sensitive to changes in drug product performance (i.e. differences in in vivo dissolution) and to make recommendations based on the simulations outcome. A total of 128 scenarios (2 Biopharmaceutics Classification System (BCS) drug types, 2 levels of KM Pgp, in 4 metabolic scenarios at 2 dose levels in 4 quality levels of t…

AnalyteCmaxPharmaceutical ScienceAdministration Oral02 engineering and technologyEquivalence Trials as TopicPharmacologyBioequivalence030226 pharmacology & pharmacyModels Biological03 medical and health sciencesFirst pass effect0302 clinical medicinePharmacokineticsHumansComputer SimulationPharmacokineticsIntestinal MucosaBiotransformationChemistryMembrane Transport Proteins021001 nanoscience & nanotechnologyBiopharmaceutics Classification SystemNONMEMNonlinear DynamicsPharmaceutical PreparationsSolubilityTherapeutic EquivalencyResearch DesignArea Under CurveLinear Models0210 nano-technologyMonte Carlo MethodDrug metabolismEuropean journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
researchProduct

On the Classification of Dynamical Data Streams Using Novel “Anti–Bayesian” Techniques

2018

The classification of dynamical data streams is among the most complex problems encountered in classification. This is, firstly, because the distribution of the data streams is non-stationary, and it changes without any prior “warning”. Secondly, the manner in which it changes is also unknown. Thirdly, and more interestingly, the model operates with the assumption that the correct classes of previously-classified patterns become available at a juncture after their appearance. This paper pioneers the use of unreported novel schemes that can classify such dynamical data streams by invoking the recently-introduced “Anti- Bayesian” (AB) techniques. Contrary to the Bayesian paradigm, that compar…

Anti-Bayesian classificationData streams
researchProduct

Sequential Mining Classification

2017

Sequential pattern mining is a data mining technique that aims to extract and analyze frequent subsequences from sequences of events or items with time constraint. Sequence data mining was introduced in 1995 with the well-known Apriori algorithm. The algorithm studied the transactions through time, in order to extract frequent patterns from the sequences of products related to a customer. Later, this technique became useful in many applications: DNA researches, medical diagnosis and prevention, telecommunications, etc. GSP, SPAM, SPADE, PrefixSPan and other advanced algorithms followed. View the evolution of data mining techniques based on sequential data, this paper discusses the multiple …

Apriori algorithmComputer sciencebusiness.industryData stream miningConcept mining02 engineering and technologycomputer.software_genreMachine learningGSP AlgorithmTree (data structure)Statistical classificationComputingMethodologies_PATTERNRECOGNITION020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingData miningArtificial intelligencebusinessK-optimal pattern discoverycomputerFSA-Red Algorithm2017 International Conference on Computer and Applications (ICCA)
researchProduct

Hop: Histogram of patterns for human action representation

2017

This paper presents a novel method for representing actions in terms of multinomial distributions of frequent sequential patterns of different length. Frequent sequential patterns are series of data descriptors that occur many times in the data. This paper proposes to learn a codebook of frequent sequential patterns by means of an apriori-like algorithm, and to represent an action with a Bag-of-Frequent-Sequential-Patterns approach. Preliminary experiments of the proposed method have been conducted for action classification on skeletal data. The method achieves state-of-the-art accuracy value in cross-subject validation.

Apriori algorithmSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSeries (mathematics)Computer sciencebusiness.industryComputer Science (all)CodebookValue (computer science)Pattern recognition02 engineering and technologyAction classificationTheoretical Computer ScienceComputingMethodologies_PATTERNRECOGNITIONAction (philosophy)020204 information systemsHistogram0202 electrical engineering electronic engineering information engineeringFrequent pattern020201 artificial intelligence & image processingMultinomial distributionArtificial intelligenceHop (telecommunications)Representation (mathematics)business
researchProduct

Machine learning for rapid mapping of archaeological structures made of dry stones – Example of burial monuments from the Khirgisuur culture, Mongoli…

2020

11 pages; International audience; The present study proposes a workflow to extract from orthomosaics the enormous amount of dry stones used by past societies to construct funeral complexes in the Mongolian steppes. Several different machine learning algorithms for binary pixel classification (i.e. stone vs non-stone) were evaluated. Input features were extracted from high-resolution orthomosaics and digital elevation models (both derived from aerial imaging). Comparative analysis used two colour spaces (RGB and HSV), texture features (contrast, homogeneity and entropy raster maps), and the topographic position index, combined with nine supervised learning algorithms (nearest centroid, naive…

Archeology010504 meteorology & atmospheric sciences[SHS.ARCHEO]Humanities and Social Sciences/Archaeology and PrehistoryComputer scienceMaterials Science (miscellaneous)Topographic position index[SDV]Life Sciences [q-bio]ConservationMachine learningcomputer.software_genre01 natural sciences[SHS]Humanities and Social SciencesNaive Bayes classifierVector graphicsPixel classification[SCCO]Cognitive sciencePixel classification Grey level co-occurrence matrix RGB colour space Texture Topographic position index Photogrammetry Burial complex planigraphy Mongolia Bronze age Iron age0601 history and archaeologyTextureSpectroscopyRGB colour space0105 earth and related environmental sciencesBronze age060102 archaeologyArtificial neural networkbusiness.industryIron ageCentroidGrey level co-occurrence matrix06 humanities and the artscomputer.file_formatMongoliaArchaeologyRandom forestSupport vector machinePhotogrammetryChemistry (miscellaneous)Photogrammetry[SDE]Environmental SciencesBurial complex planigraphyArtificial intelligenceRaster graphicsbusinessGeneral Economics Econometrics and Financecomputer
researchProduct

Acciones para mejorar la eficiencia energética en los edificios en Europa: estado del arte sobre los standards técnicos

2022

The paper is aimed at reviewing the state of the art of the European technical normative implementation during the last decades concerning the building energy efficiency. Indeed, it is well acknowledged that the present building stock is largely obsolete and inefficient: in the European context alone, around 75% of the buildings is not energy efficient and most are expected to be in use until 2050. Consequently, buildings require not only a general rehabilitation, to extend, or even avoid, its end-of-life time, but also a complete afterthought of their energy performance. That is extremely urgent to improve the overall sustainability of the construction sector that, alone, is one of the mai…

Architecture and energy conservationEdificis--RemodelacióBuildings - Repair and reconstructionimprovement green deal building rehabilitation technical normative &ampBuilding rehabilitationTechnical normative and classificationSettore ICAR/10 - Architettura Tecnica:Energies::Gestió de l'energia::Estalvi energètic [Àrees temàtiques de la UPC]Energy conservationEnergy efficiency &ampArquitectura i estalvi d'energiaclassificationGreen dealEnergy efficiency and improvement:Edificació::Rehabilitació d'edificis [Àrees temàtiques de la UPC]Energia--Estalvi
researchProduct

Comparison of Micro X-ray Computer Tomography Image Segmentation Methods: Artificial Neural Networks Versus Least Square Support Vector Machine

2013

Micro X-ray computer tomography (XCT) is a powerful non-destructive method for obtaining information about rock structures and mineralogy. A new methodology to obtain porosity from 2D XCT digital images using artificial neural network and least square support vector machine is demonstrated following these steps: the XCT image was first preprocessed, thereafter clustering algorithms such as K-means, Fuzzy c-means and self-organized maps was used for image segmentation. Then artificial neural network was applied for image classification. For comparison, least square support vector machine approach was used for classification labeling of the scan images. The methodology shows how artificial ne…

Artifact (error)Artificial neural networkContextual image classificationbusiness.industryComputer sciencePattern recognitionImage segmentationSupport vector machineDigital imageComputer visionArtificial intelligencebusinessCluster analysisCurse of dimensionality
researchProduct

Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation

2019

Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…

Artificial intelligencelcsh:Computer engineering. Computer hardwareExtreme learning machineEnsemble methodsComputer scienceBinary numberlcsh:TK7885-7895Feature selection02 engineering and technologyIntrusion detection systemlcsh:QA75.5-76.95Machine learning0202 electrical engineering electronic engineering information engineeringVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Multi layerExtreme learning machinebusiness.industryIntrusion detection system020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsBinary classificationFeature selectionSignal ProcessingSoftmax function020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceArtificial intelligencebusinessClassifier (UML)EURASIP Journal on Information Security
researchProduct

Automated detection and classification of synoptic scale fronts from atmospheric data grids

2021

<p>Automatic determination of fronts from atmospheric data is an important task for weather prediction as well as for research of synoptic scale phenomena. We developed a deep neural network to detect and classify fronts from multi-level ERA5 reanalysis data. Model training and prediction is evaluated using two different regions covering Europe and North America with data from two weather services. Due to a label deformation step performed during training we are able to directly generate frontal lines with no further thinning during post processing. Our network compares well against the weather service labels with a Critical Success Index higher than 66.9% and a Object Detecti…

Artificial neural networkComputer scienceSynoptic scale meteorologyTraining (meteorology)Network classificationFunction (mathematics)Deformation (meteorology)Baseline (configuration management)Object detectionRemote sensing
researchProduct