Search results for " Collapse"
showing 10 items of 86 documents
A multicriterion design of steel frames with shakedown constraints
2006
The minimum volume design of elastic perfectly plastic steel frames subjected to fixed and cyclic loads is searched in such a way that the structure remains in elastic field in serviceability conditions, while it is subjected to alternating plasticity under very strong cyclic actions, incremental and instantaneous collapse being prevented. The problem is faced on the grounds of a statical and a kinematical approach. The Kuhn-Tucker conditions of the two problems prove that they are each one the dual of the other and provide useful pieces of information about the structural behaviour. Numerical applications confirm the theoretical expectations: optimal designs turn out to be quite light, wit…
Small changes, big impacts: Geographic expansion in small-scale fisheries
2020
Abstract Small-scale fisheries are an important, yet neglected, millenarian activity that has been undergoing significant changes that threaten its future. Understanding how this activity is spatially distributed and the factors that drive its use of the marine space over time can shed some light on how fishing efforts and their impacts have moved over different parts of coastal marine ecosystems. This study investigated changes to the spatial distribution of small-scale fisheries along the Brazilian equatorial region between 1994 and 2014 and the factors, from ecological to socioeconomic, that influenced this shift. Bayesian hierarchical spatial models were used together with environmental…
Quasistationary solutions of scalar fields around collapsing self-interacting boson stars
2017
There is increasing numerical evidence that scalar fields can form long-lived quasibound states around black holes. Recent perturbative and numerical relativity calculations have provided further confirmation in a variety of physical systems, including both static and accreting black holes, and collapsing fermionic stars. In this work, we investigate this issue yet again in the context of gravitationally unstable boson stars leading to black-hole formation. We build a large sample of spherically symmetric initial models, both stable and unstable, incorporating a self-interaction potential with a quartic term. The three different outcomes of unstable models, namely, migration to the stable b…
Dynamical bar-mode instability in spinning bosonic stars
2020
Spinning bosonic stars (SBSs) can form from the gravitational collapse of a dilute cloud of scalar/Proca particles with nonzero angular momentum, via gravitational cooling. The scalar stars are, however, transient due to a nonaxisymmetric instability which triggers the loss of angular momentum. By contrast, no such instability was observed for the fundamental ( m = 1 ) Proca stars. In [N. Sanchis-Gual et al., Phys. Rev. Lett. 123, 221101 (2019)] we tentatively related the different stability properties to the different toroidal/spheroidal morphology of the scalar/Proca models. Here, we continue this investigation, using three-dimensional numerical-relativity simulations of the Einstein-(mas…
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.
2008
This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless sim…
THREE-DIMENSIONAL RELATIVISTIC SIMULATIONS OF ROTATING NEUTRON-STAR COLLAPSE TO A KERR BLACK HOLE
2006
We present a new three-dimensional fully general-relativistic hydrodynamics code using high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. Besides presenting a thorough set of tests which the code passes with very high accuracy, we discuss its application to the study of the gravitational collapse of uniformly rotating neutron stars to Kerr black holes. The initial stellar models are modeled as relativistic polytropes which are either secularly or dynamically unstable and with angular velocities which range from slow rotation to the mass-shedding limit. We investigate the gravitational collapse by carefully studying not only the dynami…
NEUTRINO OSCILLATION AND STELLAR COLLAPSE.
1984
Quasi-periodic accretion and gravitational waves from oscillating "toroidal neutron stars" around a Schwarzschild black hole
2002
We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal topology (i.e. ``toroidal neutron stars''). Our attention is here focussed on the dynamical response of these objects to axisymmetric perturbations. We show that, upon the introduction of perturbations, these systems either become unstable to the runaway instability or exhibit a regular oscillatory behaviour resulting in a quasi-periodic …
Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae
2011
Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational insta…
3-D collapse of rotating stars to Kerr black holes
2005
We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for su…