Search results for " Color"
showing 10 items of 770 documents
Devil's lenses.
2007
In this paper we present a new kind of kinoform lenses in which the phase distribution is characterized by the “devil’s staircase” function. The focusing properties of these fractal DOEs coined devil’s lenses (DLs) are analytically studied and compared with conventional Fresnel kinoform lenses. It is shown that under monochromatic illumination a DL give rise a single fractal focus that axially replicates the self-similarity of the lens. Under broadband illumination the superposition of the different monochromatic foci produces an increase in the depth of focus and also a strong reduction in the chromaticity variation along the optical axis.
High-contrast white-light Lau fringes
2004
We present a new optical assembly with which to achieve Lau fringes with totally incoherent illumination. Gratinglike codification of the spatially incoherent source combined with an achromatic Fresnel diffraction setup allows us to achieve Lau fringe-pattern visibility of almost 100% with broadband light. The white-light character to our proposed setup is in stark contrast to previous monochromatic implementations. Potential implications of this fact are identified.
Ensemble Planning for Digital Audio Broadcasting
2003
An exact method for graph coloring
2006
International audience; We are interested in the graph coloring problem. We propose an exact method based on a linear-decomposition of the graph. The complexity of this method is exponential according to the linearwidth of the entry graph, but linear according to its number of vertices. We present some experiments performed on literature instances, among which COLOR02 library instances. Our method is useful to solve more quickly than other exact algorithms instances with small linearwidth, such as mug graphs. Moreover, our algorithms are the first to our knowledge to solve the COLOR02 instance 4-Inser_3 with an exact method.
Distance graphs and the T-coloring problem
1999
Abstract The T-coloring problem is, given a graph G = (V, E), a set T of nonnegative integers containing 0, and a ‘span’ bound s ⩾ 0, to compute an integer coloring f of the vertices of G such that |f(ν) − f(w)| ∉ T ∀νw ∈ E and max f − min f ⩽ s. This problem arises in the planning of channel assignments for broadcast networks. When restricted to complete graphs, the T-coloring problem boils down to a number problem which can be solved efficiently for many types of sets T. The paper presents results indicating that this is not the case if the set T is arbitrary. To these ends, the class of distance graphs is introduced, which consists of all graphs G : G ≅ G(A) for some (finite) set of posi…
Grundy coloring for power graphs
2003
International audience
Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs
2013
Abstract Given graphs G and H, a vertex coloring c : V ( G ) → N is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ ( H , G ) , is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G , Σ ( H , G ) , is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for Σ ( H , G ) , discuss the computational complexity of finding this parameter for different choices of H, and prove an exact formulas for some graphs G. For every integer k and for every graph H, we construct families of graphs, G k with the property that k more colors than χ ( …
Logical definability of NP-optimisation problems with monadic auxiliary predicates
1993
Given a first-order formula ϕ with predicate symbols e1...el, so,...,sr, an NP-optimisation problem on -structures can be defined as follows: for every -structure G, a sequence of relations on G is a feasible solution iff satisfies ϕ, and the value of such a solution is defined to be ¦S0¦. In a strong sense, every polynomially bounded NP-optimisation problem has such a representation, however, it is shown here that this is no longer true if the predicates s1, ...,sr are restricted to be monadic. The result is proved by an Ehrenfeucht-Fraisse game and remains true in several more general situations.
On Packing Colorings of Distance Graphs
2014
International audience; The {\em packing chromatic number} $\chi_{\rho}(G)$ of a graph $G$ is the least integer $k$ for which there exists a mapping $f$ from $V(G)$ to $\{1,2,\ldots ,k\}$ such that any two vertices of color $i$ are at distance at least $i+1$. This paper studies the packing chromatic number of infinite distance graphs $G(\mathbb{Z},D)$, i.e. graphs with the set $\mathbb{Z}$ of integers as vertex set, with two distinct vertices $i,j\in \mathbb{Z}$ being adjacent if and only if $|i-j|\in D$. We present lower and upper bounds for $\chi_{\rho}(G(\mathbb{Z},D))$, showing that for finite $D$, the packing chromatic number is finite. Our main result concerns distance graphs with $D=…
On Coloring Unit Disk Graphs
1998
In this paper the coloring problem for unit disk (UD) graphs is considered. UD graphs are the intersection graphs of equal-sized disks in the plane. Colorings of UD graphs arise in the study of channel assignment problems in broadcast networks. Improving on a result of Clark et al. [2] it is shown that the coloring problem for UD graphs remains NP-complete for any fixed number of colors k≥ 3 . Furthermore, a new 3-approximation algorithm for the problem is presented which is based on network flow and matching techniques.