Search results for " Computational complexity"
showing 10 items of 91 documents
Topological properties of cellular automata on trees
2012
We prove that there do not exist positively expansive cellular automata defined on the full k-ary tree shift (for k>=2). Moreover, we investigate some topological properties of these automata and their relationships, namely permutivity, surjectivity, preinjectivity, right-closingness and openness.
On Block Sensitivity and Fractional Block Sensitivity
2018
We investigate the relation between the block sensitivity bs(f) and fractional block sensitivity fbs(f) complexity measures of Boolean functions. While it is known that fbs(f) = O(bs(f)2), the best known separation achieves $${\rm{fbs}}\left( f \right) = \left( {{{\left( {3\sqrt 2 } \right)}^{ - 1}} + o\left( 1 \right)} \right){\rm{bs}}{\left( f \right)^{3/2}}$$ . We improve the constant factor and show a family of functions that give fbs(f) = (6−1/2 − o(1)) bs(f)3/2.
On the Power of Non-adaptive Learning Graphs
2012
We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by cer…
The Need for Structure in Quantum Speedups
2009
Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate. First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision or the element distinctness problems), the quantum query complexity is at least the 7th root of the classical randomized query complexity. (An earlier version of this paper gave the 9th root.) This resolves a conjecture of Watrous from 2002. Second, inspired by recent work of O'Donnell et al. (2005) and Dinur et al. (2006), we conjecture t…
Visibly pushdown modular games,
2014
Games on recursive game graphs can be used to reason about the control flow of sequential programs with recursion. In games over recursive game graphs, the most natural notion of strategy is the modular strategy, i.e., a strategy that is local to a module and is oblivious to previous module invocations, and thus does not depend on the context of invocation. In this work, we study for the first time modular strategies with respect to winning conditions that can be expressed by a pushdown automaton. We show that such games are undecidable in general, and become decidable for visibly pushdown automata specifications. Our solution relies on a reduction to modular games with finite-state automat…
New Results on the Minimum Amount of Useful Space
2014
We present several new results on minimal space requirements to recognize a nonregular language: (i) realtime nondeterministic Turing machines can recognize a nonregular unary language within weak $\log\log n$ space, (ii) $\log\log n$ is a tight space lower bound for accepting general nonregular languages on weak realtime pushdown automata, (iii) there exist unary nonregular languages accepted by realtime alternating one-counter automata within weak $\log n$ space, (iv) there exist nonregular languages accepted by two-way deterministic pushdown automata within strong $\log\log n$ space, and, (v) there exist unary nonregular languages accepted by two-way one-counter automata using quantum an…
Probabilistic verifiers for asymmetric debates
2012
We examine the power of silent constant-space probabilistic verifiers that watch asymmetric debates (where one side is unable to see some of the messages of the other) between two deterministic provers, and try to determine who is right. We prove that probabilistic verifiers outperform their deterministic counterparts as asymmetric debate checkers. It is shown that the membership problem for every language in NSPACE(s(n)) has a 2^{s(n)}-time debate where one prover is completely blind to the other one, for polynomially bounded space constructible s(n). When partial information is allowed to be seen by the handicapped prover, the class of languages debatable in 2^{s(n)} time contains TIME(2^…
The minimal probabilistic and quantum finite automata recognizing uncountably many languages with fixed cutpoints
2019
Discrete Mathematics & Theoretical Computer Science ; vol. 22 no. 1 ; Automata, Logic and Semantics ; 1365-8050
Algorithmic Information Theory and Computational Complexity
2013
We present examples where theorems on complexity of computation are proved using methods in algorithmic information theory. The first example is a non-effective construction of a language for which the size of any deterministic finite automaton exceeds the size of a probabilistic finite automaton with a bounded error exponentially. The second example refers to frequency computation. Frequency computation was introduced by Rose and McNaughton in early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung, Hinrichs and others. A transducer is a finite-state automaton with an input and an output. We consider the possibilities of probabilistic and frequency transducers and prove sever…
Implications of quantum automata for contextuality
2014
We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error $ o(\log \log n) $-space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem so…