Search results for " Computer"
showing 10 items of 6910 documents
A decomposition approach to dual shuttle automated storage and retrieval systems
2016
[EN] Automated Storage and Retrieval Systems (AS/RS) have become vital in today¿s distribution and production environments, however it remains necessary to equip them with more efficient operational control policies. Motivated by real situations encountered by companies employing AS/RS, the present paper studies a miniload AS/RS system, with a dual shuttle crane in which a set of storage and retrieval requests must be scheduled such that the prioritized waiting time is minimized. Dual shuttle cranes have received minimal academic attention and thus continue to pose new problems that must be solved. The miniload AS/RS problem is addressed by decomposing it into a location assignment and sequ…
Interrogating witnesses for geometric constraint solving
2012
International audience; Classically, geometric constraint solvers use graph-based methods to decompose systems of geometric constraints. These methods have intrinsic limitations, which the witness method overcomes; a witness is a solution of a variant of the system. This paper details the computation of a basis of the vector space of free infinitesimal motions of a typical witness, and explains how to use this basis to interrogate the witness for dependence detection. The paper shows that the witness method detects all kinds of dependences: structural dependences already detectable by graph-based methods, but also non-structural dependences, due to known or unknown geometric theorems, which…
A Hierarchical Learning Scheme for Solving the Stochastic Point Location Problem
2012
Published version of a chapter in the book: Advanced Research in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-31087-4_78 This paper deals with the Stochastic-Point Location (SPL) problem. It presents a solution which is novel in both philosophy and strategy to all the reported related learning algorithms. The SPL problem concerns the task of a Learning Mechanism attempting to locate a point on a line. The mechanism interacts with a random environment which essentially informs it, possibly erroneously, if the unknown parameter is on the left or the right of a given point which also is the current guess. The first pioneering work […
Globally Optimal Line Clustering and Vanishing Point Estimation in Manhattan World
2012
The projections of world parallel lines in an image intersect at a single point called the vanishing point (VP). VPs are a key ingredient for various vision tasks including rotation estimation and 3D reconstruction. Urban environments generally exhibit some dominant orthogonal VPs. Given a set of lines extracted from a calibrated image, this paper aims to (1) determine the line clustering, i.e. find which line belongs to which VP, and (2) estimate the associated orthogonal VPs. None of the existing methods is fully satisfactory because of the inherent difficulties of the problem, such as the local minima and the chicken-and-egg aspect. In this paper, we present a new algorithm that solves t…
Fast Earth Mover's Distance Computation for Catadioptric Image Sequences
2016
International audience; Earth mover's distance is one of the most effective metric for comparing histograms in various image retrieval applications. The main drawback is its computational complexity which hinders its usage in various comparison tasks. We propose fast earth mover's distance computation by providing better initialization to the transportation simplex algorithm. The new approach enables faster EMD computation in Visual Memory (VM) compared to the state of the art methods. The new proposed strategy computes earth mover distance without compromising its accuracy.
Adapted Approach for Omnidirectional Egomotion Estimation
2011
Egomotion estimation is based principally on the estimation of the optical flow in the image. Recent research has shown that the use of omnidirectional systems with large fields of view allow overcoming the limitation presented in planar-projection imagery in order to address the problem of motion analysis. For omnidirectional images, the 2D motion is often estimated using methods developed for perspective images. This paper adapts motion field calculated using adapted method which takes into account the distortions existing in the omnidirectional image. This 2D motion field is then used as input to the egomotion estimation process using spherical representation of the motion equation. Expe…
Adaptive Fuzzy Super-Twisting Sliding Mode Control for Microgyroscope
2019
This paper proposes a novel adaptive fuzzy super-twisting sliding mode control scheme for microgyroscopes with unknown model uncertainties and external disturbances. Firstly, an adaptive algorithm is used to estimate the unknown parameters and angular velocity of microgyroscopes. Secondly, in order to improve the performance of the system and the superiority of the super-twisting algorithm, this paper utilizes the universal approximation characteristic of the fuzzy system to approach the gain of the super-twisting sliding mode controller and identify the gain of the controller online, realizing the adaptive adjustment of the controller parameters. Simulation results verify the superiority a…
Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information
2016
The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: an ideal state-feedback H 8 controller with full access to the complete state information and two static output-fee…
Intelligent agents for feature modelling in computer aided design
2017
Abstract CAD modelling can be referred to as the process of generating an integrated multiple view model as a representation of multiple views of engineering design. In many situations, a change in the model of one view may conflict with the models of other views. In such situations, the model of some views needs to be adapted in order to make all models consistent. Thus, CAD models should be capable of adapting themselves to new situations. Recently, agent based technologies have been considered in order to increase both knowledge level and intelligence of real and virtual objects. The contribution of this paper consists in introducing the intelligent agents in intelligent CAD modelling. T…
Model-based Engineering for the Integration of Manufacturing Systems with Advanced Analytics
2016
To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformation rules based on the domain knowledge of manufacturing engineers and data scientists. Our approach uses a model of a manufacturing process and its associated data as inputs, and generates a trained neural network model as an output to predict a quantity of interest. This pape…