6533b7dcfe1ef96bd1271688

RESEARCH PRODUCT

Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information

Josep Rubió-massegúJosep M. RossellFrancisco Palacios-qui NoneroHamid Reza Karimi

subject

0209 industrial biotechnologyPeak ground accelerationEngineeringLarge-scale controlControl and OptimizationScale (ratio):Informàtica::Automàtica i control [Àrees temàtiques de la UPC]Vibration controlFull scaleEdificis -- Vibració020101 civil engineering:Enginyeria civil::Materials i estructures [Àrees temàtiques de la UPC]02 engineering and technologyDesign strategyFeedback control systems0201 civil engineeringStructural vibration controlControl d'estructures (Enginyeria)020901 industrial engineering & automationControl theoryLMI optimizationBuildings -- VibrationElectrical and Electronic Engineeringbusiness.industryPartial state informationLinear matrix inequalityControl engineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science ApplicationsHuman-Computer InteractionControl and Systems Engineering; Electrical and Electronic Engineering; Human-Computer Interaction; Computer Science Applications1707 Computer Vision and Pattern Recognition; Control and OptimizationControl and Systems EngineeringSistemes de control per retroaccióBuildings--VibrationStructural control (Engineering)ActuatorbusinessStatic output-feedback control

description

The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: an ideal state-feedback H 8 controller with full access to the complete state information and two static output-feedback H 8 controllers with restricted neighbouring state information. To assess the performance of the proposed controllers, the corresponding frequency responses are investigated and a proper set of numerical simulations are conducted, using the full scale North-South El Centro 1940 seismic record as ground acceleration input. The obtained results indicate that, despite the severe information constraints, the proposed static output-feedback controllers attain a level of seismic protection that is very similar to that achieved by the ideal state-feedback controller with complete state information. Peer Reviewed

10.1049/iet-cta.2015.0737https://hdl.handle.net/2117/84148