Search results for "Actuator"

showing 10 items of 161 documents

Decoupled nonlinear adaptive control of position and stiffness for pneumatic soft robots

2020

This article addresses the problem of simultaneous and robust closed-loop control of joint stiffness and position, for a class of antagonistically actuated pneumatic soft robots with rigid links and compliant joints. By introducing a first-order dynamic equation for the stiffness variable and using the additional control degree of freedom, embedded in the null space of the pneumatic actuator matrix, an innovative control approach is introduced comprising an adaptive compensator and a dynamic decoupler. The proposed solution builds upon existing adaptive control theory and provides a technique for closing the loop on joint stiffness in pneumatic variable stiffness actuators. Under a very mi…

0209 industrial biotechnologyAdaptive controlComputer science02 engineering and technologynull-spaceSoft robotadaptive controlComputer Science::Robotics020901 industrial engineering & automationArtificial IntelligenceControl theoryPosition (vector)0202 electrical engineering electronic engineering information engineeringmedicineElectrical and Electronic Engineeringvariable stiffness actuatorsPneumatic actuatorApplied MathematicsMechanical EngineeringStiffnessNonlinear adaptive controlphysical human–robot interactionantagonistic driveModeling and SimulationJoint stiffnesspneumatic actuatorRobot020201 artificial intelligence & image processingmedicine.symptomSoftware
researchProduct

Comparison of Model-Based Simultaneous Position and Stiffness Control Techniques for Pneumatic Soft Robots

2020

Soft robots have been extensively studied for their ability to provide both good performance and safe human-robot interaction. In this paper, we present and compare the performance of two model-based control techniques with the common aim to independently and simultaneously control position and stiffness of a pneumatic soft robot’s joint. The dynamic system of a robot arm with flexible joints actuated by a pneumatic antagonistic pair of actuators, so-called McKibben artificial muscles, will be regarded, while its dynamic parameters will be considered imprecise. Simulation results are provided to verify the performance of the algorithms.

0209 industrial biotechnologyAdaptive controlPneumatic actuatorComputer scienceAdaptive controlModel based controlStiffnessAntagonistic drive02 engineering and technologySoft robotsVariable stiffness actuator020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaPosition (vector)Control theoryPneumatic actuator0202 electrical engineering electronic engineering information engineeringmedicineRobot020201 artificial intelligence & image processingArtificial musclemedicine.symptomActuatorRobotic arm
researchProduct

Modeling of an active torsion bar automotive suspension for ride comfort and energy analysis in standard road profiles

2019

Abstract Chassis technology is evolving towards active suspension, in which actuators can provide forces to each wheel individually. This overcomes the traditional trade-off between comfort and handling, at the expense of increased complexity and electric consumption. To reduce power demand, regenerative solutions capable of harvesting a certain amount of energy otherwise dissipated in vehicle suspensions and to enhance vehicle dynamics for improving ride comfort and road safety at the same time have been researched. In this paper, an active suspension based on a torsion bar is modeled and analyzed under the excitation from standardized road profiles according to the ISO 8608 norm. A skyhoo…

0209 industrial biotechnologyChassisComputer science020208 electrical & electronic engineering02 engineering and technologyActive suspension7. Clean energyDC motorTorsion springAutomotive engineeringVehicle dynamicsSkyhookVDP::Teknologi: 500020901 industrial engineering & automationControl and Systems EngineeringControl theory11. Sustainability0202 electrical engineering electronic engineering information engineeringActuatorSuspension (vehicle)Excitation
researchProduct

Model-Free Sliding-Mode-Based Detection and Estimation of Backlash in Drives With Single Encoder

2021

Backlash is a frequently encountered problem for various drives, especially those equipped with a single encoder onside of the controlled actuator. This brief proposes a sliding-mode differentiator-based estimation of unknown backlash size while measuring the actuator displacement only. Neither actuator nor load dynamics are explicitly known, while a principal second-order actuator behavior is assumed. We make use of the different perturbation dynamics distinctive for different backlash modes and an unbounded impulse-type perturbation at impact. The latter leads to transient loss of the sliding-mode and allows for detecting an isolated time instant of the backlash occurrence. The proposed m…

0209 industrial biotechnologyComputer science020208 electrical & electronic engineeringPerturbation (astronomy)02 engineering and technologyResidualUpper and lower boundsSystem dynamicsDifferentiatorVDP::Teknologi: 500020901 industrial engineering & automationControl and Systems EngineeringControl theory0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringActuatorEncoderBacklash
researchProduct

Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuat…

2018

Abstract This study proposes a new rate-dependent feedforward compensator for compensation of hysteresis nonlinearities in smart materials-based actuators without considering the analytical inverse model. The proposed rate-dependent compensator is constructed with the inverse multiplicative structure of the rate-dependent Prandtl–Ishlinskii (RDPI) model. The study also presents an investigation for the compensation error when the proposed compensator is applied in an open-loop feedforward manner. Then, an internal model-based feedback control design is applied with the proposed feedforward compensator to a piezoelectric cantilever actuator. The experimental results illustrate that the propo…

0209 industrial biotechnologyComputer scienceApplied MathematicsFeedback controlInternal modelFeed forwardInverseInversion (meteorology)02 engineering and technology021001 nanoscience & nanotechnologyMotion controlSmart materialComputer Science::OtherComputer Science Applications020901 industrial engineering & automationControl and Systems EngineeringControl theoryElectrical and Electronic Engineering0210 nano-technologyActuatorControl Engineering Practice
researchProduct

Anti-swing control of a hydraulic loader crane with a hanging load

2021

Abstract In this paper, anti-swing control for a hydraulic loader crane is presented. The difference between hydraulic and electric cranes are discussed to show the challenges associated with hydraulic actuation. The hanging load dynamics and relevant kinematics of the crane are derived to create the 2-DOF anti-swing controller. The anti-swing controller is added to the electro-hydraulic motion controller via feedforward. A dynamic simulation model of the crane is made, and the control system is evaluated in simulations with a path controller in actuator space. Simulation results show significant reduction in the load swing angle during motion. Experiments are carried out to verify the perf…

0209 industrial biotechnologyComputer scienceMechanical EngineeringFeed forwardComputerApplications_COMPUTERSINOTHERSYSTEMSMotion controller02 engineering and technologyKinematicsSwing021001 nanoscience & nanotechnologyComputer Science ApplicationsLoaderVDP::Teknologi: 500020901 industrial engineering & automationControl and Systems EngineeringControl theoryControl systemHardware_INTEGRATEDCIRCUITSElectrical and Electronic Engineering0210 nano-technologyActuatorMechatronics
researchProduct

Guidelines to Select Between Self-Contained Electro-Hydraulic and Electro-Mechanical Cylinder

2020

This research paper presents guidelines on how to select between self-contained electro-hydraulic and electromechanical cylinders. An example based on the motion control of a single-boom crane is studied. The sizing process of the different off-the-shelf components is analyzed in terms of design impact when replacing a traditional valve-controlled hydraulic cylinder. The self-contained electro-hydraulic solution is the best choice when a risk for high impact forces is present, when the required output power level lies continuously above 2 kW, or when installation space, weight, and cost are critical design objectives. However, the electro-mechanical solution is expected to show more control…

0209 industrial biotechnologyComputer scienceStiffnessComputingMilieux_LEGALASPECTSOFCOMPUTING02 engineering and technologyLinear actuatorMotion controlSizingCylinder (engine)law.inventionControllabilityHydraulic cylinder020901 industrial engineering & automation020401 chemical engineeringlawControl theoryLinear motionVDP::Teknologi: 500::Maskinfag: 570medicine0204 chemical engineeringmedicine.symptomHydraulic machineryActuator
researchProduct

A robust two-feedback loops position control algorithm for compliant low-cost series elastic actuators

2019

Elastic joints are considered to outperform rigid joints in terms of peak dynamics, collision tolerance, robustness, and energy efficiency. Therefore, intrinsically elastic joints have become progressively prominent over the last years for a variety of robotic applications. In this article, a two-feedback loops position control algorithm is proposed for an elastic actuator to deal with the influence from external disturbances. The considered elastic actuator was recently designed by our research group for Serpens, a low-cost, open-source and highly-compliant multi-purpose modular snake robot. In particular, the inner controller loop is implemented as a model reference adaptive controller (M…

0209 industrial biotechnologyComputer sciencebusiness.industry020208 electrical & electronic engineering02 engineering and technologyModular designFuzzy logicVDP::Teknologi: 500020901 industrial engineering & automationRobustness (computer science)Control theoryControl system0202 electrical engineering electronic engineering information engineeringTorqueRobotActuatorbusinessAlgorithm
researchProduct

A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability

2019

Self-contained electro-hydraulic cylinders have the potential to replace both conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency, plug-and-play installation, and reduced maintenance. Current commercial solutions of this technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost efficiency and power applications below five [kW]. Therefore, there is the need of developing more flexible systems adaptable to multiple applications. This research paper offers a contribution in this regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding capability, sealed tank, c…

0209 industrial biotechnologyControl and OptimizationComputer science020209 energyEnergy Engineering and Power TechnologyComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologySelf-contained cylinderslcsh:TechnologyAutomotive engineeringCylinder (engine)law.invention020901 industrial engineering & automationlawload-holding valves0202 electrical engineering electronic engineering information engineeringCylinderElectrical and Electronic EngineeringHydraulic machineryEngineering (miscellaneous)Renewable Energy Sustainability and the EnvironmentOscillationlcsh:TmodelingSelf-contained cylinders; electro-hydraulic systems; load-holding valves; modelingPower (physics)VDP::Teknologi: 500ActuatorEnergy (signal processing)electro-hydraulic systemsEnergy (miscellaneous)
researchProduct

A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency

2019

This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems&rsquo

0209 industrial biotechnologyControl and OptimizationComputer scienceHydraulicspassive load-holdingenergy recoveryComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologyAutomotive engineeringlaw.invention020901 industrial engineering & automationlinear actuatorslawload-carrying applications0202 electrical engineering electronic engineering information engineeringHydraulic machineryenergy efficiencyEnergy recoveryVDP::Teknologi: 500::Materialteknologi: 520020208 electrical & electronic engineeringEnergy consumptionLinear actuatorFluid powerControl and Systems Engineeringproportional directional control valvesActuatorself-contained cylinderselectro-hydraulic systemsEfficient energy useActuators
researchProduct