0000000000385430

AUTHOR

Francisco Palacios-qui Nonero

0000-0002-1022-8880

Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information

The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: an ideal state-feedback H 8 controller with full access to the complete state information and two static output-fee…

research product

Sequential design of multioverlapping controllers for structural vibration control of tall buildings under seismic excitation

In this article, a computationally effective strategy to obtain multioverlapping controllers via the inclusion principle is applied to design a state-feedback multioverlapping linear-quadratic regulator controller for a 20-story building. The proposed semidecentralized controller only requires state information of neighboring stories to compute the corresponding control actions. This particular information exchange configuration allows introducing a dramatic reduction in the transmission range required for a wireless implementation of the communications system. More specifically, just a one-story transmission range is required by the proposed multioverlapping controller, while a full-buildi…

research product

Improved Switching Strategy for Selective Harmonic Elimination in DC-AC Signal Generation via Pulse-Width Modulation

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2013/870904 Open Access We present an advanced design methodology for pulse-width-modulated (PWM) DC-AC signal generation. Using design methods based on the Walsh transform, AC sinusoidal signals can be approximated by suitable PWM signals. For different AC amplitudes, the switching instants of the PWM signals can be efficiently computed by using appropriate systems of explicit linear equations. However, the equation systems provided by conventional implementations of this approach are typically only valid for a restricted interval of AC amplitudes a…

research product

Static output-feedback control for vehicle suspensions: a single-step linear matrix inequality approach

In this paper, a new strategy to design static output-feedback controllers for a class of vehicle suspension systems is presented. A theoretical background on recent advances in output-feedback control is first provided, which makes possible an effective synthesis of static output-feedback controllers by solving a single linear matrix inequality optimization problem. Next, a simplified model of a quarter-car suspension system is proposed, taking the ride comfort, suspension stroke, road holding ability, and control effort as the main performance criteria in the vehicle suspension design. The new approach is then used to design a static output-feedbackH∞controller that only uses the suspensi…

research product

Optimal design of complex passive-damping systems for vibration control of large structures: An energy-to-peak approach

Published version of an article in the journal: Abstract and Applied Analysis. Also available from the publisher at: http://dx.doi.org/10.1155/2014/510236 Open Access We present a new design strategy that makes it possible to synthesize decentralized output-feedback controllers by solving two successive optimization problems with linear matrix inequality (LMI) constraints. In the initial LMI optimization problem, two auxiliary elements are computed: a standard state-feedback controller, which can be taken as a reference in the performance assessment, and a matrix that facilitates a proper definition of the main LMI optimization problem. Next, by solving the second optimization problem, the …

research product

Structural Vibration Control for a Class of Connected Multistructure Mechanical Systems

Published version of an article from the journal: Mathematical Problems in Engineering. Also available from the publisher:http://dx.doi.org/10.1155/2012/942910 A mathematical model to compute the overall vibrational response of connected multistructure mechanical systems is presented. Using the proposed model, structural vibration control strategies for seismic protection of multibuilding systems can be efficiently designed. Particular attention is paid to the design of control configurations that combine passive interbuilding dampers with local feedback control systems implemented in the buildings. These hybrid active-passive control strategies possess the good properties of passive contro…

research product