Search results for " Conductivity"
showing 10 items of 794 documents
A chiral molecular conductor: synthesis, structure, and physical properties of [ET]3[Sb2(L-tart)2].CH3CN (ET = bis(ethylendithio)tetrathiafulvalene; …
2004
The salt [ET](3)[Sb(2)(L-tart)(2)].CH(3)CN (1) has been obtained by electrocrystallization of the organic donor bis(ethylendithio)tetrathiafulvalene (ET or BEDT-TTF) in the presence of the chiral anionic complex [Sb(2)(L-tart)(2)](2-) (L-tart = (2R,3R)-(+)-tartrate). This salt crystallizes in the chiral space group P2(1)2(1)2(1) (a = 11.145(2) angstroms, b = 12.848(2) angstroms, c = 40.159(14) angstroms, V = 5750.4(14) angstroms(3), Z = 4) and is formed by alternating layers of the anions and of the organic radicals in a noncentrosymmetric alpha-type packing. This compound shows a room temperature electrical conductivity of approximately 1 S.cm(-1) and semiconducting behavior with an activa…
Variability of near-surface saturated hydraulic conductivity for the clay soils of a small Sicilian basin
2019
Abstract Proper characterization of saturated hydraulic conductivity, Ks, of clay soils in a hillslope or a basin is still a challenge for soil science. In this investigation, the clay soils of the Maganoce (Sicily, Italy) basin were sampled at 19 sampling sites by the BEST procedure of soil hydraulic characterization. More OM implied less compact conditions (decreasing dry soil bulk density; coefficient of determination, R2 = 0.67), more stability to water of the soil aggregates (increasing water stable aggregates; R2 = 0.83) and, consequently, higher Ks values (R2 = 0.54). Variability of Ks was lower in the steeper zones of the basin than in the flatter ones. A comparison with the Ks data…
Functional Hybrid Materials Containing Polypyrrole and Polyoxometalate Clusters: Searching for High Conductivities and Specific Charges
2002
Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction
2014
This work reports on the synthesis of the intrinsically conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with several counter-ions, ClO4, PF6 and bis(trifluoromethylsulfonyl)imide (BTFMSI), by electro-polymerization and its thermoelectric properties. We show that, depending on the counter-ion size, the thermoelectric efficiency of PEDOT can be increased up to two orders of magnitude. A further chemical reduction with hydrazine optimizes the power factor (PF). By changing the counter-ions, we were able to increase the electrical conductivity (σ) of PEDOT by a factor of three, while the Seebeck coefficient remains at the same order of magnitude in the three polymers. The best…
Reversible stimulus-responsive Cu(i) iodide pyridine coordination polymer
2015
We present a structurally flexible copper–iodide–pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations.
Equilibrium and transport properties of ion-exchange membranes
1984
Abstract Specific properties (ion-exchange capacity, water content, pore volume fraction) and transport properties (counterion transport number and electrical conductivity) have been measured in four commercial cation-exchange membranes loaded with a variety of cations of different nature and charge. Not surprisingly, equivalent conductances are lower than in free solution and transport numbers decrease with valency of the counterion. This behavior is explained by taking into account a “tortuosity factor”, due to a lengthening of the pores across the membrane, except for a membrane with a lower water content and for ions of higher charge, in which electrostatic interactions between mobile a…
Bio-based rigid high-density polyurethane foams as a structural thermal break material
2020
Abstract Sustainable development of building industry implies increasing usage of green materials. With this aim and for the intended application as a structural thermal break material, rigid high-density polyurethane foams have been manufactured using polyols derived from renewable resources - tall oil fatty acids. Thermal conductivity, compressive strength and stiffness of the foams of density ranging from ca. 100 to 680 kg/m3 have been determined. Comparison of the bio-based foams with reference foams derived from petrochemical resources demonstrated similar performance characteristics thus suggesting that bio-based foams can also serve as structural thermal break materials. Analytical m…
Prediction method of electrical conductivity of nano-modified glass fibre reinforced plastics
2019
Glass fibre reinforced plastics (GFRP) is non-conductive construction material, however with carbon nanotubes (CNT) modifying it can get additional functionality due to its gained electrical conductivity. Main aim of the study is to check functionality of the prediction method of electrical conductivity of GFRP with nano-modified epoxy matrix using structural approach. GFRP composites under investigation were based on unidirectional (UD) Glass fiber and two matrixes modified with carbon nanotubes. Electrical conductivity of epoxy resin modified by CNT (concentrations < 1%) was modelled using structural approach. Electrical conductivity of unidirectional GFRP layer was measured experimentall…
Theoretical Design of Organic Metals Based on the Phthalocyanine Macrocycle
1990
Phthalocyanine molecular crystals and cofacially linked polymers are well documented as low-dimensional materials that may attain high electrical conductivities. Air-stable conductivities on the order of 1 to 1000 S/cm after partial oxidation by iodine have been reported.1–3 These conductivity studies indicate that the electrical conductivity has very little dependence on the identity of the atom complexed in the cavity, but is strongly dependent on the orientation and spacing of the phthalocyanine rings. A columnar stacking with minimum spacing leads to a maximum interaction between π-molecular orbitals on adjacent rings and promotes the highest conductivity. More effective π-interactions …
Investigation on lithium/polymer electrolyte interface for high performance lithium rechargeable batteries
1997
Abstract Performance data of several linear and cross-linked polymer electrolytes are reported and the electrochemical criteria for the selection of electrolytes to be used in electric vehicle lithium metal batteries are discussed. Further, laboratory lithium cells with LiMn2O4 composite cathode were tested to ascertain the effective viability of these polymer in solid-state batteries and preliminary results are reported. This study clearly demonstrates the importance of a broad-based electrochemical characterization in selecting an electrolyte for lithium metal batteries.