Search results for " Conformal"
showing 10 items of 51 documents
Algebras of pseudodifferential operators on complete manifolds
2003
In several influential works, Melrose has studied examples of non-compact manifolds M 0 M_0 whose large scale geometry is described by a Lie algebra of vector fields V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (M;TM) on a compactification of M 0 M_0 to a manifold with corners M M . The geometry of these manifolds—called “manifolds with a Lie structure at infinity”—was studied from an axiomatic point of view in a previous paper of ours. In this paper, we define and study an algebra Ψ 1 , 0 , V ∞ ( M 0 ) \Psi _{1,0,\mathcal V}^\infty (M_0) of pseudodifferential operators canonically associated to a manifold M 0 M_0 with a Lie structure at infinity V ⊂ Γ ( M ; T M ) \mathcal V \subset \Gamma (…
Graded polynomial identities and Specht property of the Lie algebrasl2
2013
Abstract Let G be a group. The Lie algebra sl 2 of 2 × 2 traceless matrices over a field K can be endowed up to isomorphism, with three distinct non-trivial G-gradings induced by the groups Z 2 , Z 2 × Z 2 and Z . It has been recently shown (Koshlukov, 2008 [8] ) that for each grading the ideal of G-graded identities has a finite basis. In this paper we prove that when char ( K ) = 0 , the algebra sl 2 endowed with each of the above three gradings has an ideal of graded identities Id G ( sl 2 ) satisfying the Specht property, i.e., every ideal of graded identities containing Id G ( sl 2 ) is finitely based.
COMPLEX STRUCTURES ON INDECOMPOSABLE 6-DIMENSIONAL NILPOTENT REAL LIE ALGEBRAS
2007
We compute all complex structures on indecomposable 6-dimensional real Lie algebras and their equivalence classes. We also give for each of them a global holomorphic chart on the connected simply connected Lie group associated to the real Lie algebra and write down the multiplication in that chart.
Topological Hopf Algebras, Quantum Groups and Deformation Quantization
2019
After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologi es on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities a nd provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described.
Amplitudes from superconformal Ward identities
2018
We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from lower-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a non-planar two-loop five-particle integral.
Algebra Structures on Hom(C,L)
1999
info:eu-repo/semantics/published
Implications of nonplanar dual conformal symmetry
2018
Recently, Bern et al observed that a certain class of next-to-planar Feynman integrals possess a bonus symmetry that is closely related to dual conformal symmetry. It corresponds to a projection of the latter along a certain lightlike direction. Previous studies were performed at the level of the loop integrand, and a Ward identity for the integral was formulated. We investigate the implications of the symmetry at the level of the integrated quantities. In particular, we focus on the phenomenologically important case of five-particle scattering. The symmetry simplifies the four-variable problem to a three-variable one. In the context of the recently proposed space of pentagon functions, the…
A note on Einstein gravity on AdS(3) and boundary conformal field theory
1998
We find a simple relation between the first subleading terms in the asymptotic expansion of the metric field in AdS$_3$, obeying the Brown-Henneaux boundary conditions, and the stress tensor of the underlying Liouville theory on the boundary. We can also provide an more explicit relation between the bulk metric and the boundary conformal field theory when it is described in terms of a free field with a background charge.
Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities
2016
We analytically investigate backreaction by a quantum scalar field on two rotating Ba\~nados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we f…
Yangian Symmetry for Fishnet Feynman Graphs
2017
Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the conformal algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions as well as the inclusion of fermions in four dimensions. The Yangian symmetry results in novel differential equations for these families of largely unsolved Feynman integrals. Notably, the considered fishnet graphs in three and four dimensions dominate the correlation functions and scattering amplitudes in specific double scaling limits of planar, gamma-twisted N=4 super Yang-Mills or ABJM theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability of the plana…