6533b831fe1ef96bd12990f0
RESEARCH PRODUCT
Graded polynomial identities and Specht property of the Lie algebrasl2
Antonino GiambrunoManuela Da Silva Souzasubject
Filtered algebraDiscrete mathematicsPure mathematicsAlgebra and Number TheoryLie algebraDifferential graded algebraGraded ringSpecht moduleCellular algebraLie superalgebraMathematicsLie conformal algebraGraded Lie algebradescription
Abstract Let G be a group. The Lie algebra sl 2 of 2 × 2 traceless matrices over a field K can be endowed up to isomorphism, with three distinct non-trivial G-gradings induced by the groups Z 2 , Z 2 × Z 2 and Z . It has been recently shown (Koshlukov, 2008 [8] ) that for each grading the ideal of G-graded identities has a finite basis. In this paper we prove that when char ( K ) = 0 , the algebra sl 2 endowed with each of the above three gradings has an ideal of graded identities Id G ( sl 2 ) satisfying the Specht property, i.e., every ideal of graded identities containing Id G ( sl 2 ) is finitely based.
year | journal | country | edition | language |
---|---|---|---|---|
2013-09-01 | Journal of Algebra |