0000000000223259
AUTHOR
Manuela Da Silva Souza
Specht property for some varieties of Jordan algebras of almost polynomial growth
Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .
Graded polynomial identities and Specht property of the Lie algebrasl2
Abstract Let G be a group. The Lie algebra sl 2 of 2 × 2 traceless matrices over a field K can be endowed up to isomorphism, with three distinct non-trivial G-gradings induced by the groups Z 2 , Z 2 × Z 2 and Z . It has been recently shown (Koshlukov, 2008 [8] ) that for each grading the ideal of G-graded identities has a finite basis. In this paper we prove that when char ( K ) = 0 , the algebra sl 2 endowed with each of the above three gradings has an ideal of graded identities Id G ( sl 2 ) satisfying the Specht property, i.e., every ideal of graded identities containing Id G ( sl 2 ) is finitely based.