Search results for " Conjecture"
showing 10 items of 96 documents
The cohomology of a variation of polarized Hodge structures over a quasi-compact Kähler manifold
2007
In this article, we consider the cohomologies with coefficients in a variation of polarized Hodge structures on a quasi-compact Kaehler manifold. We show that the L 2 L^2 -Dolbeault cohomology can be identified with the L 2 L^2 cohomology; we also give several direct applications of the result above.
Algebraic de Rham Cohomology
2017
Let k be a field of characteristic zero. We are going to define relative algebraic de Rham cohomology for general varieties over k, not necessarily smooth.
Non-equivalent hyperbolic knots
2002
We construct, for each integer n 3, pairs of non-equivalent hyperbolic knots with the same 2fold and n-fold cyclic branched covers. We also discuss necessary conditions for such pairs of knots to exist. 2001 Elsevier Science B.V. All rights reserved. MSC: primary 57M25; secondary 57M12, 57M50
Champs de vecteurs analytiques et champs de gradients
2002
A theorem of Łojasiewicz asserts that any relatively compact solution of a real analytic gradient vector field has finite length. We show here a generalization of this result for relatively compact solutions of an analytic vector field X with a smooth invariant hypersurface, transversally hyperbolic for X, where the restriction of the field is a gradient. This solves some instances of R. Thom's Gradient Conjecture. Furthermore, if the dimension of the ambient space is three, these solutions do not oscillate (in the sense that they cut an analytic set only finitely many times); this can also be applied to some gradient vector fields.
Landis-type conjecture for the half-Laplacian
2023
In this paper, we study the Landis-type conjecture, i.e., unique continuation property from infinity, of the fractional Schrödinger equation with drift and potential terms. We show that if any solution of the equation decays at a certain exponential rate, then it must be trivial. The main ingredients of our proof are the Caffarelli-Silvestre extension and Armitage’s Liouville-type theorem. peerReviewed
Recensione a: Vitae Vergilianae antiquae, ediderunt G. Brugnoli et F. Stok, Romae 1997
2000
The minimal model of Hahn for the Calvin cycle.
2018
There are many models of the Calvin cycle of photosynthesis in the literature. When investigating the dynamics of these models one strategy is to look at the simplest possible models in order to get the most detailed insights. We investigate a minimal model of the Calvin cycle introduced by Hahn while he was pursuing this strategy. In a variant of the model not including photorespiration it is shown that there exists exactly one positive steady state and that this steady state is unstable. For generic initial data either all concentrations tend to infinity at lates times or all concentrations tend to zero at late times. In a variant including photorespiration it is shown that for suitable v…
Zu Ampelius
2021
Loci aliquot Ampeli, rerum Romanarum scriptoris, ad genuinam lectionem restituuntur.
Ad Luciani Hermot. 24
2001
Contractions yielding new supersymmetric extensions of the poincaré algebra
1991
Two new Poincare superalgebras are analysed. They are obtained by the Wigner-Inonu contraction from two real forms of the superalgebra OSp(2;4;C) - one describing the N = 2 anti-de-Sitter superalgebra with a non-compact internal symmetry SO(1, 1) and the other corresponding to the de-Sitter superalgebra with internal symmetry SO(2). Both are 19-dimensional self-conjugate extensions of the Konopel'chenko superalgebra. They contain 10 Poincare generators and one generator of internal symmetry in addition to 8 odd generators half of which, however, do not commute with translations.