Search results for " Conjecture"

showing 10 items of 96 documents

On two topological cardinal invariants of an order-theoretic flavour

2012

Noetherian type and Noetherian $\pi$-type are two cardinal functions which were introduced by Peregudov in 1997, capturing some properties studied earlier by the Russian School. Their behavior has been shown to be akin to that of the \emph{cellularity}, that is the supremum of the sizes of pairwise disjoint non-empty open sets in a topological space. Building on that analogy, we study the Noetherian $\pi$-type of $\kappa$-Suslin Lines, and we are able to determine it for every $\kappa$ up to the first singular cardinal. We then prove a consequence of Chang's Conjecture for $\aleph_\omega$ regarding the Noetherian type of countably supported box products which generalizes a result of Lajos S…

NoetherianHigher Suslin LinePixley–Roy hyperspacePrimary: 03E04 54A25 Secondary: 03E35 54D70LogicOpen setMathematics::General TopologyDisjoint setsTopological spaceType (model theory)TopologyChangʼs ConjectureChangʼs Conjecture for ℵωFOS: MathematicsBox productMathematicsMathematics - General TopologyConjectureMathematics::Commutative AlgebraGeneral Topology (math.GN)PCF theoryNoetherian typeMathematics - LogicInfimum and supremumMathematics::LogicOIF spaceLogic (math.LO)
researchProduct

The Egan problem on the pull-in range of type 2 PLLs

2021

In 1981, famous engineer William F. Egan conjectured that a higher-order type 2 PLL with an infinite hold-in range also has an infinite pull-in range, and supported his conjecture with some third-order PLL implementations. Although it is known that for the second-order type 2 PLLs the hold-in range and the pull-in range are both infinite, the present paper shows that the Egan conjecture may be not valid in general. We provide an implementation of the third-order type 2 PLL, which has an infinite hold-in range and experiences stable oscillations. This implementation and the Egan conjecture naturally pose a problem, which we will call the Egan problem: to determine a class of type 2 PLLs for …

PLLtype IIelektroniset piiritEgan problem on the pull-in rangehold-in rangeEgan conjectureglobal stabilityharmonic balance methodsäätöteoriavärähtelyttype 2describing functionphase-locked loopnonlinear analysisGardner problem on the lock-in rangedifferentiaaliyhtälötLyapunov functions
researchProduct

Poincaré's role in the Crémieu-Pender controversy over electric convection

1989

Summary In the course of 1901, V. Cremieu published the results of some experiments carried out to test the magnetic effects of electric convection currents. According to Cremieu, his experiments had proved that convection currents had no magnetic effects and consequently they were not equivalent to conduction currents, that is they were not ‘real’ electric currents. These negative results conflicted with those of well-known experiments carried out by other researchers, in particular with Rowland's experiments, and with Maxwell's, Hertz's and Lorentz's theories, which was more shocking. The publication of Cremieu's experiments raised a controversy which involved directly or indirectly some …

PhysicsConvectionsymbols.namesakeTheoretical physicsHistory and Philosophy of ScienceLorentz transformationHertzQuantum electrodynamicsPoincaré conjecturesymbolsElectric currentThermal conductionAnnals of Science
researchProduct

-Poincaré supergravities from Lie algebra expansions

2012

Abstract We use the expansion of superalgebras procedure (summarized in the text) to derive Chern–Simons (CS) actions for the ( p , q ) -Poincare supergravities in three-dimensional spacetimes. After deriving the action for the ( p , 0 ) -Poincare supergravity as a CS theory for the expansion osp ( p | 2 ; R ) ( 2 , 1 ) of osp ( p | 2 ; R ) , we find the general ( p , q ) -Poincare superalgebras and their associated D = 3 supergravity actions as CS gauge theories from an expansion of the simple osp ( p + q | 2 , R ) superalgebras, namely osp ( p + q | 2 , R ) ( 2 , 1 , 2 ) .

PhysicsNuclear and High Energy PhysicsSupergravityAction (physics)High Energy Physics::Theorysymbols.namesakeSimple (abstract algebra)Mathematics::Quantum AlgebraPoincaré conjectureLie algebrasymbolsGauge theoryMathematics::Representation TheoryMathematical physicsNuclear Physics B
researchProduct

Poincaré Surface of Sections, Mappings

2001

We consider a system with two degrees of freedom, which we describe in four-dimensional phase space. In this (finite) space we define an (oriented) two-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the n + 1-th piercing point depends only on the nth. The Hamiltonian thus induces a mapping n → n + 1 in the “Poincare surface of section” (PSS). The mapping transforms points of the PSS into other (or the same) points of the PSS. In the following we shall limit …

Physicssymbols.namesakePiercing pointPhase spaceMathematical analysisPoincaré conjecturesymbolsHamiltonian (quantum mechanics)Two degrees of freedomHamiltonian system
researchProduct

Some remarks on Geometric simple connectivity in dimension Four. Part A

2007

The present paper contains some complements and comments to the longer article Geometric simple connectivity in smooth four dimensional differential Topology, Part A. Its aim is to be a useful companion when reading that article,and also to help in understand how it fits into the first author’s programforthe Poincar´e conjecture.

Poincar´e conjecture.Geometric
researchProduct

Characterization of Orlicz–Sobolev space

2007

We give a new characterization of the Orlicz–Sobolev space W1,Ψ(Rn) in terms of a pointwise inequality connected to the Young function Ψ. We also study different Poincaré inequalities in the metric measure space.

PointwiseMathematics::Functional AnalysisGeneral MathematicsMathematical analysisFunction (mathematics)Characterization (mathematics)Space (mathematics)Measure (mathematics)Sobolev spacesymbols.namesakeTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONPoincaré conjectureMetric (mathematics)symbolsMathematicsArkiv för Matematik
researchProduct

The Lie algebra of polynomial vector fields and the Jacobian conjecture

1998

The Jacobian conjecture for polynomial maps ϕ:Kn→Kn is shown to be equivalent to a certain Lie algebra theoretic property of the Lie algebra\(\mathbb{D}\) of formal vector fields inn variables. To be precise, let\(\mathbb{D}_0 \) be the unique subalgebra of codimensionn (consisting of the singular vector fields),H a Cartan subalgebra of\(\mathbb{D}_0 \),Hλ the root spaces corresponding to linear forms λ onH and\(A = \oplus _{\lambda \in {\rm H}^ * } H_\lambda \). Then every polynomial map ϕ:Kn→Kn with invertible Jacobian matrix is an automorphism if and only if every automorphism Φ of\(\mathbb{D}\) with Φ(A)\( \subseteq A\) satisfies Φ(A)=A.

Polynomial (hyperelastic model)Discrete mathematicsGeneral MathematicsSubalgebraCartan subalgebraJacobian conjectureAutomorphismlaw.inventionCombinatoricsInvertible matrixlawLie algebraVector fieldMathematicsMonatshefte f�r Mathematik
researchProduct

Anomalous partially hyperbolic diffeomorphisms III: Abundance and incoherence

2020

Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping…

Pure mathematics37D30Similarity (geometry)Mathematics::Dynamical SystemsGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)dynamical coherenceMSC Primary: 37C15 37D3037C1501 natural sciencessymbols.namesake0103 physical sciencesFOS: MathematicsErgodic theoryMathematics - Dynamical Systems[MATH]Mathematics [math]0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsConjecture010102 general mathematicsSurface (topology)Mathematics::Geometric Topologystable ergodicityMapping class groupFlow (mathematics)Poincaré conjecturesymbols010307 mathematical physicsGeometry and Topologypartially hyperbolic diffeomorphisms
researchProduct

Sharp Poincaré inequalities in a class of non-convex sets

2018

Let $gamma$ be a smooth, non-closed, simple curve whose image is symmetric with respect to the $y$-axis, and let $D$ be a planar domain consisting of the points on one side of $gamma$, within a suitable distance $delta$ of $gamma$. Denote by $mu_1^{odd}(D)$ the smallest nontrivial Neumann eigenvalue having a corresponding eigenfunction that is odd with respect to the $y$-axis. If $gamma$ satisfies some simple geometric conditions, then $mu_1^{odd}(D)$ can be sharply estimated from below in terms of the length of $gamma$ , its curvature, and $delta$. Moreover, we give explicit conditions on $delta$ that ensure $mu_1^{odd}(D)=mu_1(D)$. Finally, we can extend our bound on $mu_1^{odd}(D)$ to a …

Pure mathematicsClass (set theory)non-convex domainsInequalitymedia_common.quotation_subjectRegular polygonStatistical and Nonlinear Physicssymbols.namesakeSettore MAT/05 - Analisi MatematicaPoincaré conjecturesymbolsNeumann eigenvalueGeometry and Topologylower boundMathematical Physicsmedia_commonMathematics
researchProduct