Search results for " Controlled release"
showing 3 items of 13 documents
Development and In Vitro Evaluation of Lyotropic Liquid Crystals for the Controlled Release of Dexamethasone.
2017
Made available in DSpace on 2018-12-11T17:33:26Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-08-02 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) In this study, amphiphilic polymers were investigated as biomaterials that can control dexamethasone (DXM) release. Such materials present interfacial properties in the presence of water and an oily phase that can result in lyotropic liquid crystalline systems (LLCS). In addition, they can form colloidal nanostructures similar to those in living organisms, such as bilayers and hexagonal and cubic phases, which can be exploited to solubilize lipophilic drugs to sustain their release and enhance bioavailability. It was…
Incorporation of nisin in poly (ethylene-co-vinyl acetate) films by melt processing: a study on the antimicrobial properties
2011
Both industry and academia have shown a growing interest in materials with antimicrobial properties suitable for food packaging applications. In this study, we prepared and characterized thin films of ethylene-co-vinyl acetate (EVA) copolymer with antimicrobial properties. The films were prepared with a film blowing process by incorporating a nisin preparation as an antimicrobial agent in the melt. Two grades of EVA containing 14 and 28% (wt/wt) vinyl acetate (EVA 14 and EVA 28, respectively) and two commercial formulations of nisin with different nominal activities were used. The effect of the nisin concentration also was evaluated. The films with the highest antimicrobial activity were th…
Not always what closes best opens better: mesoporous nanoparticles capped with organic gates
2019
ABSTRACT Four types of calcined MCM-41 silica nanoparticles, loaded with dyes and capped with different gating ensembles are prepared and characterized. N1 and N2 nanoparticles are loaded with rhodamine 6G and capped with bulky poly(ethylene glycol) derivatives bearing ester groups (1 and 2). N3-N4 nanoparticles are loaded with sulforhodamine B and capped with self-immolative derivatives bearing ester moieties. In the absence of esterase enzyme negligible cargo release from N1, N3 and N4 nanoparticles is observed whereas a remarkable release for N2 is obtained most likely due to the formation of an irregular coating on the outer surface of the nanoparticles. In contrast, a marked delivery i…