Search results for " DETECTOR."
showing 5 items of 2685 documents
Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T.
2019
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above ∼5 GeV/c2, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c2 by looking for electronic recoils induced by the Migdal effect and bremsstrahlung us…
XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection
2019
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In pa…
Excess electronic recoil events in XENON1T
2020
We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76\pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$\sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 \times 10^{-12}$,…
Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period
2016
This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resol…
Underground investigation of extensive air showers spectra at high energy range of cosmic rays and other research in the Pyhäsalmi mine
2020
Abstract High energy particles reaching the Earth’s atmosphere are known as cosmic rays. As a result of interactions with nuclei of air molecules, cosmic rays induce showers of secondary particles, which can be divided into 3 components: electromagnetic, hadronic and muonic components. The Experiment with Multi Muon Array (EMMA), located at the depth of 75 m in the Pyhäsalmi mine in Finland, investigates the muonic component of the Extensive Air Showers (EAS) to deduce the direction, energy, and the mass of the primary cosmic ray particles. In this paper we give a concise description and methodology used by EMMA followed by a brief review of the C14 experiment. Finally, we review the feasib…