Search results for " DISCOVERY"

showing 10 items of 4082 documents

Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors

2017

Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors.…

0301 basic medicineBiophysicsPharmaceutical ScienceConnective tissueBioengineeringBreast Neoplasmsquantum dotsMice SCIDFlow cytometryBiomaterialsCell therapy03 medical and health sciencesIn vivoCell MovementInternational Journal of NanomedicineCell Line TumorDrug DiscoverymedicineAnimalsHumansViability assayParticle SizeCytotoxicityCell ShapeSkinOriginal Researchmesenchymal stem cellsMigration Assaymedicine.diagnostic_testCell DeathChemistryOrganic ChemistryMesenchymal stem cellGeneral MedicineDynamic Light ScatteringEndocytosis030104 developmental biologymedicine.anatomical_structureimmunodeficient miceCancer researchNanoparticlesFemaletumor tropismtumor-specific deliveryInternational Journal of Nanomedicine
researchProduct

Morphogenetically-Active Barrier Membrane for Guided Bone Regeneration, Based on Amorphous Polyphosphate

2017

We describe a novel regeneratively-active barrier membrane which consists of a durable electrospun poly(ε-caprolactone) (PCL) net covered with a morphogenetically-active biohybrid material composed of collagen and inorganic polyphosphate (polyP). The patch-like fibrous collagen structures are decorated with small amorphous polyP nanoparticles (50 nm) formed by precipitation of this energy-rich and enzyme-degradable (alkaline phosphatase) polymer in the presence of calcium ions. The fabricated PCL-polyP/collagen hybrid mats are characterized by advantageous biomechanical properties, such as enhanced flexibility and stretchability with almost unaltered tensile strength of the PCL net. The pol…

0301 basic medicineBone Regenerationcollagen-inducingBarrier membranePolymersPharmaceutical Science02 engineering and technologyMatrix (biology)chemistry.chemical_compoundMiceOsteogenesisPolyphosphatesDrug Discoverystromal cell-derived factor-1Pharmacology Toxicology and Pharmaceutics (miscellaneous)MC3T3-E1 cellsChemistrybiologizationAnatomy3T3 Cells021001 nanoscience & nanotechnology3. Good healthMembranetensile strength/resistanceAlkaline phosphataseCollagen0210 nano-technologyinorganic polyphosphateSurface PropertiesPolyestersArticleAngiopoietin-203 medical and health sciencesCalcification PhysiologicAnimalsHumansBone regenerationTissue EngineeringPolyphosphateMesenchymal stem cellMembrane ProteinsMembranes ArtificialMesenchymal Stem Cellspolypropylene mesh030104 developmental biologyGene Expression RegulationBiophysicsbiologization; hernia repair; inorganic polyphosphate; collagen-inducing; polypropylene mesh; tensile strength/resistance; stromal cell-derived factor-1; MC3T3-E1 cellsNanoparticlesWound healinghernia repairMarine Drugs
researchProduct

Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology.

2018

Abstract Introduction Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood. Aim of the study The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola r…

0301 basic medicineBryoniamedicine.medical_treatmentLongevityPharmaceutical ScienceEleutherococcusNutrient sensingWithaniaCREB03 medical and health sciencesDownregulation and upregulationCell Line TumorDrug DiscoveryAdaptogenmedicineHumansNeuroinflammationPharmacologybiologyPlant ExtractsSystems BiologyBrainMERTKAdaptation PhysiologicalLeuzeaCell biology030104 developmental biologyComplementary and alternative medicineNuclear receptorbiology.proteinMolecular MedicineRhodiolaSignal transductionGlioblastomaNeurogliaSignal TransductionPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Critical Roles of EGFR family members in breast cancer and breast cancer stem cells: Targets for therapy

2016

The roles of the epidermal growth factor receptor (EGFR) signaling pathway in various cancers including breast, bladder, brain, colorectal, esophageal, gastric, head and neck, hepatocellular, lung, neuroblastoma, ovarian, pancreatic, prostate, renal and other cancers have been keenly investigated since the 1980's. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about this pathway and how its deregulation can lead to cancer and how it may be differentially regulated in various cell types. Multiple inhibitors to EGFR family members have been developed and many are in clinical use. Current research often focuses o…

0301 basic medicineCA15-3OncologyEGFR HER2 mIRs Cancer Stem Cells Drug Resistance Metastasismedicine.medical_specialtyEGFRDrug ResistancemIRCancer Stem CellBreast NeoplasmsNOMetastasisMetastasis03 medical and health sciences0302 clinical medicineBreast cancerCancer stem cellInternal medicineCancer Stem CellsHER2Drug DiscoverymicroRNAmedicineCancer Stem Cells; Drug Resistance; EGFR; HER2; Metastasis; mIRs; Pharmacology; Drug Discovery3003 Pharmaceutical ScienceAnimalsHumansEpidermal growth factor receptorPharmacologyCancer Stem Cells; Drug Resistance; EGFR; HER2; Metastasis; mIRsmIRsbiologybusiness.industryEGFR HER2 mIRs Cancer Stem Cells Drug Resistance Metastasis.Drug Discovery3003 Pharmaceutical ScienceCancermedicine.disease3. Good healthErbB Receptors030104 developmental biology030220 oncology & carcinogenesisbiology.proteinNeoplastic Stem CellsFemaleStem cellbusinessSignal Transduction
researchProduct

Integrating the Tumor Microenvironment into Cancer Therapy

2020

© 2020 by the authors.

0301 basic medicineCancer ResearchMechanotransductionReviewGut floralcsh:RC254-28203 medical and health sciences0302 clinical medicineImmune systemStromamedicineMechanotransductionStromal reprogrammingTumor microenvironmentbiologybusiness.industryMicrobiotaCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseasebiology.organism_classificationPrognostic toolsMetforminMitochondria030104 developmental biologyMetabolismOncologyImmune therapyTumor progression030220 oncology & carcinogenesisCancer researchBiomarker discoverybusinessReprogrammingVitamin D3
researchProduct

Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology.

2019

Drug repurposing (or repositioning) is an emerging concept to use old drugs for new treatment indications. Phytochemicals isolated from medicinal plants have been largely neglected in this context, although their pharmacological activities have been well investigated in the past, and they may have considerable potentials for repositioning. A grand number of plant alkaloids inhibit syngeneic or xenograft tumor growth in vivo. Molecular modes of action in cancer cells include induction of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, inhibition of angiogenesis and glycolysis, stress and anti-inflammatory responses, regulation of immune functions, cellular differentiation, a…

0301 basic medicineCancer ResearchPhytochemicalsContext (language use)Antineoplastic AgentsPharmacologymedicine.disease_causeMetastasis03 medical and health sciences0302 clinical medicineAlkaloidsNeoplasmsDrug DiscoveryToxicity TestsmedicineAnimalsHumansRepurposingCardiotoxicitybusiness.industryDrug Repositioningmedicine.diseaseDrug repositioning030104 developmental biology030220 oncology & carcinogenesisCancer cellbusinessCarcinogenesisGenotoxicitySeminars in cancer biology
researchProduct

Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury.

2019

Drug-induced liver injury is a major cause of drug discovery failure in clinical trials and a leading cause of liver disease. Current preclinical drug testing does not predict hepatotoxicity which highlights the importance of developing highly predictive cell-based models. The use of stem cell technology and differentiation into hepatocyte-like cells (HLCs) could provide a stable source of hepatocytes for multiple applications, including drug screening. HLCs derived from both embryonic and induced pluripotent stem cells have been used to accurately predict hepatotoxicity as well as to test individual-specific toxicity. Although there are still many limitations, mainly related to the lack of…

0301 basic medicineCancer ResearchPopulationCellInduced Pluripotent Stem CellsDrug Evaluation PreclinicalBiology03 medical and health sciencesLiver disease0302 clinical medicinemedicineAnimalsHumansInduced pluripotent stem celleducationMolecular BiologyEmbryonic Stem Cellseducation.field_of_studyDrug discoveryCell DifferentiationCell Biologymedicine.diseaseEmbryonic stem cell030104 developmental biologymedicine.anatomical_structurePhenotypeHepatocyteCancer researchHepatocytesStem cellChemical and Drug Induced Liver Injury030217 neurology & neurosurgeryDevelopmental BiologyDifferentiation; research in biological diversity
researchProduct

Monoclonal Antibodies, Bispecific Antibodies and Antibody-Drug Conjugates in Oncohematology

2020

Background: The therapeutic outcomes and the prognosis of patients with various hematologic malignancies are not always ideal with the current standard of care. Objective: The aim of this study is to analyze the results of the use of monoclonal antibodies, bispecific antibodies and antibody-drug conjugates for the therapy of malignant hemopathies. Methods: A mini-review was achieved using the articles published in Web of Science and PubMed between January 2017 and January 2020 and the new patents were made in this field. Results: Naked monoclonal antibodies have improved the therapeutic results obtained with standard of care, but they also have side effects and the use of some of them can …

0301 basic medicineCancer ResearchReceptor complexAntibody-drug conjugateImmunoconjugatesmedicine.drug_classmedicine.medical_treatmentAntineoplastic AgentsOfatumumabMonoclonal antibodyPatents as Topic03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAntigenObinutuzumabAntibodies BispecificDrug DiscoveryAnimalsHumansMedicinePharmacology (medical)Clinical Trials as Topicbusiness.industryAntibodies MonoclonalGeneral MedicineImmunotherapy030104 developmental biologyOncologychemistryHematologic Neoplasms030220 oncology & carcinogenesisMonoclonalCancer researchImmunotherapybusinessRecent Patents on Anti-Cancer Drug Discovery
researchProduct

Chimeric Antigen Receptor-Engineered T-Cells - A New Way and Era for Lymphoma Treatment.

2019

Background: Patients with refractory or relapsed diffuse large B-cell lymphoma have a poor prognosis with the current standard of care. Objective: Chimeric Antigen Receptor T-cells (CAR T-cells) are functionally reprogrammed lymphocytes, which are able to recognize and kill tumor cells. The aim of this study is to make progress in this area. Method: A mini-review was achieved using the articles published in Web of Science and PubMed in the last year and the new patents were made in this field. Results: The responses to CAR T-cell products axicabtagene ciloleucel and tisagenlecleucel are promising; the objective response rate can reach up to 83%, and the complete response rate ranges betwee…

0301 basic medicineCancer Researchmedicine.drug_classmedicine.medical_treatmentT-LymphocytesMonoclonal antibodyImmunotherapy Adoptive03 medical and health sciences0302 clinical medicineInterferonDrug DiscoveryMedicineHumansPharmacology (medical)Clinical Trials as TopicReceptors Chimeric Antigenbusiness.industryGeneral MedicineImmunotherapymedicine.diseaseFusion proteinChimeric antigen receptorLymphomaCytokine release syndrome030104 developmental biologyOncology030220 oncology & carcinogenesisCancer researchLymphoma Large B-Cell DiffusebusinessDiffuse large B-cell lymphomamedicine.drugRecent patents on anti-cancer drug discovery
researchProduct

Repurposing of artemisinin-type drugs for the treatment of acute leukemia.

2020

Cancer treatment represents an unmet challenge due to the development of drug resistance and severe side effects of chemotherapy. Artemisinin (ARS)-type compounds exhibit excellent antimalarial effects with few side effects and drug-resistance. ARS and its derivatives were also reported to act against various tumor types in vitro and in vivo, including acute leukemia. Therefore, ARS-type compounds may be exquisitely suitable for repurposing in leukemia treatment. To provide comprehensive clues of ARS and its derivatives for acute leukemia treatment, their molecular mechanisms are discussed in this review. Five monomeric molecules and 72 dimers, trimers and hybrids based on the ARS scaffold …

0301 basic medicineCancer Researchmedicine.medical_treatmentAntineoplastic AgentsDrug resistancePharmacology03 medical and health sciencesAntimalarials0302 clinical medicineIn vivoNeoplasmsDrug DiscoverymedicineAnimalsHumansArtemisininRepurposingChemotherapyAcute leukemiabusiness.industryDrug Repositioningmedicine.diseaseIn vitroArtemisininsLeukemia030104 developmental biology030220 oncology & carcinogenesisbusinessmedicine.drugSeminars in cancer biology
researchProduct