Search results for " DOCKING"

showing 10 items of 226 documents

Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors

2012

Studies of the the three-dimensional quantitative structure–activity relationships for ninety-five c-kit tyrosine kinase inhibitors were performed. Based on a co-crystallized compound (1 T46), known inhibitors were aligned with c-kit by induced-fit docking, and multiple training/test set splitting was performed to validate the selected pharmacophore model. The best pharmacophore model consisted of five features: one hydrogen-bond donor and four aromatic rings. Reliable statistics were obtained (R 2 = 0.95, R pred 2  = 0.75), and the model was validated by using it to select c-kit inhibitors from a database; 82.1% of the hits it retrieved were active. Accordingly, our model can be reliably u…

Models MolecularQuantitative structure–activity relationshipChemistryStereochemistryOrganic ChemistryQuantitative Structure-Activity RelationshipC-kit . 3D-QSAR . Kohonen maps . Induced-fit dockingSettore CHIM/08 - Chimica FarmaceuticaCatalysisComputer Science ApplicationsInorganic ChemistryProto-Oncogene Proteins c-kitComputational Theory and MathematicsDocking (molecular)Drug DiscoveryPhysical and Theoretical ChemistryPharmacophoreReceptorTyrosine kinaseProtein Kinase Inhibitors
researchProduct

IKK-β inhibitors: An analysis of drug–receptor interaction by using Molecular Docking and Pharmacophore 3D-QSAR approaches

2010

Abstract The IKK kinases family represents a thrilling area of research because of its importance in regulating the activity of NF-kB transcription factors. The discovery of the central role played by IKK-β in the activation of transcription in response to apoptotic or inflammatory stimuli allowed to considerate its modulation as a promising tool for the treatment of chronic inflammation and cancer. To date, several IKK-β inhibitors have been discovered and tested. In this work, an analysis of the interactions between different classes of inhibitors and their biological target was performed, through the application of Molecular Docking and Pharmacophore/3D-QSAR approaches to a set of 141 in…

Models MolecularQuantitative structure–activity relationshipReceptors DrugMolecular Sequence DataQuantitative Structure-Activity RelationshipIκB kinaseComputational biologyPharmacologyBiologyMaterials ChemistryHumansAmino Acid SequenceNF-kBHomology modelingPhysical and Theoretical ChemistryProtein Kinase InhibitorsTranscription factorSpectroscopyIKK-betaIKK-beta inhibitors Molecular Docking Pharmacophore 3D-QSAR approachesBinding SitesPharmacophoreKinaseHomology modelingSettore CHIM/08 - Chimica FarmaceuticaComputer Graphics and Computer-Aided DesignI-kappa B KinaseMolecular DockingStructural Homology ProteinBiological targetDrug receptorPharmacophoreJournal of Molecular Graphics and Modelling
researchProduct

Design and Synthesis of 4-Substituted Indolo[3,2-e][1,2,3]triazolo[1,5-a]pyrimidine Derivatives with Antitumor Activity

2008

New derivatives of the indolo[3,2- e][1,2,3]triazolo[1,5- a]pyrimidine system, substituted in the 4 position, were designed as novel antitumor agents because of their theoretical capability to form stable complexes with DNA fragments. The calculated free energies of binding were found in the range -12.76 --> -39.68 Kcal/mol. The docking studies revealed a common binding mode with the chromophore intercalated between GC base pairs, whereas the side chain lies along the minor groove. Compounds, selected on the basis of the docking studies and suitably synthesized, showed antiproliferative activity against each type of tumor cell line investigated, generally in the low micromolar range. The mo…

Models MolecularSEQUENCE SPECIFICITYMolecular modelPyrimidineStereochemistryDNA-BINDINGBIOLOGICAL INTERESTStereoisomerismAntineoplastic AgentsPyrimidinonesChemical synthesisHeterocyclic Compounds 4 or More RingsAUTOMATED DOCKINGchemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorDrug DiscoveryStructure–activity relationshipHumansALGORITHMBinding siteCell ProliferationBinding SitesMolecular StructureChemistryBiological activityStereoisomerismDOMINO REACTIONDNADocking (molecular)Drug DesignNATIONAL-CANCER-INSTITUTEACTINOMYCIN-DMolecular MedicineCOMPLEXESDrug Screening Assays AntitumorTUMOR-CELL-LINES
researchProduct

N-(INDAZOLYL)BENZAMIDO DERIVATIVES AS CDK1 INHIBITORS: DESIGN, SYNTHESIS, BIOLOGICAL ACTIVITY, AND MOLECULAR DOCKING STUDIES

2009

A series of N-1H-indazole-1-carboxamides has been synthesized and their effects on both CDK1/cyclin B and the K-562 (human chronic myelogenus leukemia) cell line were evaluated. Using a computational model, we have observed that all the most active compounds 9e, f, i-n exhibited the same binding mode of purvanalol A in the ATP-binding cleft. Although they were able to moderately inhibit the leukemic cell line K-562 and to show inhibitory activity against the Cdc2-Cyclin B kinase in the low micromolar range, they turned out to be non-cytotoxic against HuDe (IZSL) primary cell cultures from human derm. These preliminary results are quite encouraging in view of the low toxicity demonstrated by…

Models MolecularStereochemistryCyclin BPharmaceutical ScienceAntineoplastic AgentsCyclin BStructure-Activity RelationshipCDC2 Protein KinaseDrug DiscoveryHumansStructure–activity relationshipCell ProliferationCyclin-dependent kinase 1Binding SitesbiologyCell growthChemistryImidazolesN-(1H-indazolyl)benzamides 1H-indazole-3-carboxamides CDK1 Molecular dockingBiological activitySettore CHIM/08 - Chimica FarmaceuticaBiochemistryDocking (molecular)Cell cultureDrug DesignBenzamidesbiology.proteinDrug Screening Assays AntitumorK562 CellsCDC2 Protein KinaseProtein Binding
researchProduct

Inside the Hsp90 inhibitors binding mode through induced fit docking

2009

Abstract During the last few decades, the development of new anticancer strategies had to face the instability of many tumors, occurring when the genetic plasticity of cells produces new drug-resistant cancers. It has been shown that a chaperone protein, heat shock protein 90 (Hsp90), is one of the fundamental factors involved in the cell response to stresses, and its role in many biochemical pathways has been demonstrated. Thus, the inhibition of Hsp90 represents a new target of antitumor therapy, since it may influence many specific signaling pathways. The natural antibiotic Geldanamycin is the first Hsp90 inhibitor that has been identified. Nevertheless, more potent and water-soluble sma…

Models MolecularStereochemistryLactams MacrocyclicMolecular Sequence DataComputational biologyCrystallography X-RayLigandsHsp90 inhibitorchemistry.chemical_compoundAdenosine TriphosphateHeat shock proteinCatalytic DomainMaterials ChemistryBenzoquinonesAmino Acid SequenceHSP90 Heat-Shock ProteinsPhysical and Theoretical ChemistrySpectroscopyInduced fitBinding SitesbiologyMolecular StructureHeat shock proteinDrug discoveryActive siteGeldanamycinRadicicolComputer Graphics and Computer-Aided DesignSmall moleculeHsp90Settore CHIM/08 - Chimica FarmaceuticachemistryDocking (molecular)Molecular dockingbiology.proteinGeldanamicynSequence AlignmentProtein Binding
researchProduct

In vitro and in silico studies of polycondensed diazine systems as anti-parasitic agents

2012

Abstract Parasitic diseases caused by protozoarian agents are still relevant today more than ever. Recently, we synthesized several polycondensed diazine derivatives by means 1,3-dipolar cycloaddition reactions. A broad selection of these compounds were submitted to in vitro biological screening against Plasmodium falciparum , Leishmania infantum , Trypanosoma brucei , and Trypanosoma cruzi , resulting active at micromolar level. Induced Fit Docking/MM-GBSA studies were performed giving interesting indications about the probable mechanism of action of the most active compounds

Models MolecularTrypanosoma cruziIn silicoPlasmodium falciparumTrypanosoma brucei bruceiClinical BiochemistryPharmaceutical ScienceTrypanosoma bruceiBiochemistryStructure-Activity Relationshipchemistry.chemical_compoundParasitic Sensitivity Testsparasitic diseasesDrug DiscoveryLeishmania infantumTrypanosoma cruziMolecular BiologyDiazineAntiparasitic AgentsDose-Response Relationship DrugMolecular StructurebiologyOrganic ChemistryPlasmodium falciparumAnti-parasitic Plasmodium Leishmania Trypanosoma Diazine Induced fit docking/MM-GBSAbiology.organism_classificationSettore CHIM/08 - Chimica FarmaceuticaHydrazineschemistryBiochemistryDocking (molecular)TrypanosomaMolecular MedicineLeishmania infantumBioorganic & Medicinal Chemistry Letters
researchProduct

Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes

2018

Cytochrome P450 (CYP) enzymes constitute an essential xenobiotic metabolizing system that regulates the elimination of lipophilic compounds from the body. Convenient and affordable assays for CYP enzymes are important for assessing these metabolic pathways.In this study, 10 novel profluorescent coumarin derivatives with various substitutions at carbons 3, 6 and 7 were developed. Molecular modeling indicated that 3-phenylcoumarin offers an excellent scaffold for the development of selective substrate compounds for various human CYP forms, as they could be metabolized to fluorescent 7-hydroxycoumarin derivatives. Oxidation of profluorescent coumarin derivatives to fluorescent metabolites by 1…

Models MolecularentsyymitoxidationHealth Toxicology and MutagenesisToxicology030226 pharmacology & pharmacyBiochemistrycoumarinFluorescence03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCytochrome P-450 Enzyme SystemCoumarinsCYPenzyme kineticsderivativeCytochrome P-450 Enzyme InhibitorsHumansheterocyclic compoundsEnzyme kineticskumariiniCYP2A6ta317Pharmacologychemistry.chemical_classificationBenzoflavonesbiologyChemistryCYP1A2fluoresenssiCytochrome P450substraatit (kemia)General MedicineCoumarindrug metabolismMolecular Docking SimulationMetabolic pathwayKineticsEnzymeBiochemistrylääkekemia030220 oncology & carcinogenesisInactivation Metabolicbiology.proteinMicrosomes LiverOxidation-ReductionDrug metabolism
researchProduct

Design and Synthesis of Novel 1,3-Thiazole and 2-Hydrazinyl-1,3-Thiazole Derivatives as Anti-

2019

In the context of there being a limited number of clinically approved drugs for the treatment of Candida sp.-based infections, along with the rapid development of resistance to the existing antifungals, two novel series of 4-phenyl-1,3-thiazole and 2-hydrazinyl-4-phenyl-1,3-thiazole derivatives were synthesized and tested in vitro for their anti-Candida potential. Two compounds (7a and 7e) showed promising inhibitory activity against the pathogenic C. albicans strain, exhibiting substantially lower MIC values (7.81 μg/mL and 3.9 μg/mL, respectively) as compared with the reference drug fluconazole (15.62 μg/mL). Their anti-Candida activity is also supported by molecular docking studies, usin…

Molecular Docking Simulation13-thiazoleStructure-Activity RelationshipAntifungal Agentsbovine serum albuminfluorescence quenchingSerum Albumin Bovineanti-Candidamolecular dockingArticleCandidaMolecules (Basel, Switzerland)
researchProduct

Rational design of allosteric modulators of the aromatase enzyme: An unprecedented therapeutic strategy to fight breast cancer.

2019

Estrogens play a key role in cellular proliferation of estrogen-receptor-positive (ER+) breast cancers (BCs). Suppression of estrogen production by competitive inhibitors of the enzyme aromatase (AIs) is currently one of the most effective therapies against ER + BC. Yet, the development of acquired resistance, after prolonged treatments with AIs, represents a clinical major concern. Serendipitous findings indicate that aromatase may be non-competitively inhibited by clinically employed drugs and/or industrial chemicals. Here, by performing in silico screening on two putative allosteric sites, molecular dynamics and free energy simulations, supported by enzymatic and cell-based assays, we id…

Molecular dynamicmedicine.drug_classIn silicoAllosteric regulationCytochromes P450; Aromatase; Molecular dynamics; Aromatase inhibitors; Docking; Breast cancer; Resistance onset; Mixed inhibition mechanismAntineoplastic AgentsBreast NeoplasmsMolecular dynamicsMolecular Dynamics SimulationDockingStructure-Activity RelationshipBreast cancerBreast cancerAromataseAllosteric RegulationCell Line TumorDrug DiscoverymedicineResistance onsetHumansMixed inhibition mechanismAromataseEnzyme InhibitorsCell ProliferationPharmacologychemistry.chemical_classificationbiologyDose-Response Relationship DrugMolecular StructureChemistryOrganic ChemistryRational designAromatase inhibitorGeneral Medicinemedicine.diseaseEnzymeAromatase inhibitorsSettore CHIM/03 - Chimica Generale E InorganicaEstrogenDocking (molecular)Drug Designbiology.proteinCancer researchDrug Screening Assays AntitumorCytochromes P450European journal of medicinal chemistry
researchProduct

Suitability ofMMGBSAfor the selection of correct ligand binding modes from docking results

2018

The estimation of the correct binding mode and affinity of a ligand into a target protein using computational methods is challenging. However, docking can introduce poses from which the correct binding mode could be identified using other methods. Here, we analyzed the reliability of binding energy estimation using the molecular mechanics-generalized Born surface area (MMGBSA) method without and with energy minimization to identify the likely ligand binding modes within docking results. MMGBSA workflow (a) outperformed docking in recognizing the correct binding modes of androgen receptor ligands and (b) improved the correlation coefficient of computational and experimental results of rescor…

Molecular modelBinding energyta3111LigandsEnergy minimization01 natural sciencesBiochemistrylääkesuunnitteluSubstrate SpecificityCytochrome P-450 CYP2A6Free energy perturbationCoumarinsDrug DiscoveryHumansta317PharmacologyBinding Sitesmolecular modeling010405 organic chemistryChemistryDrug discoveryOrganic Chemistryta1182liganditreceptor and ligandslaskennallinen kemiaLigand (biochemistry)Protein Structure Tertiary0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistryDocking (molecular)structure based drug-designThermodynamicsMolecular MedicineproteiinitTarget proteinBiological systemProtein BindingChemical Biology & Drug Design
researchProduct