Search results for " DYNAMICAL SYSTEM"

showing 10 items of 188 documents

Principal Poincar\'e Pontryagin Function associated to some families of Morse real polynomials

2014

It is known that the Principal Poincar\'e Pontryagin Function is generically an Abelian integral. We give a sufficient condition on monodromy to ensure that it is an Abelian integral also in non generic cases. In non generic cases it is an iterated integral. Uribe [17, 18] gives in a special case a precise description of the Principal Poincar\'e Pontryagin Function, an iterated integral of length at most 2, involving logarithmic functions with only one ramification at a point at infinity. We extend this result to some non isodromic families of real Morse polynomials.

Abelian integralPure mathematicsLogarithmApplied Mathematics34M35 34C08 14D05General Physics and AstronomyStatistical and Nonlinear PhysicsMorse codelaw.inventionPontryagin's minimum principlesymbols.namesakeMonodromylawPoincaré conjecturesymbolsPoint at infinitySpecial caseMathematics - Dynamical SystemsMathematical PhysicsMathematics
researchProduct

Normal forms of hyperbolic logarithmic transseries

2021

We find the normal forms of hyperbolic logarithmic transseries with respect to parabolic logarithmic normalizing changes of variables. We provide a necessary and sufficient condition on such transseries for the normal form to be linear. The normalizing transformations are obtained via fixed point theorems, and are given algorithmically, as limits of Picard sequences in appropriate topologies.

Applied MathematicsMathematics::History and OverviewFOS: Mathematicsfixed point theory ; formal normal forms ; hyperbolic fixed point ; Koenigs sequence ; linearization ; logarithmic transseries[MATH] Mathematics [math]Dynamical Systems (math.DS)Mathematics - Dynamical Systems[MATH]Mathematics [math]34C20 37C25 47H10 39B12 46A19 26A12 12J15AnalysisJournal of Differential Equations
researchProduct

A Hardware and Secure Pseudorandom Generator for Constrained Devices

2018

Hardware security for an Internet of Things or cyber physical system drives the need for ubiquitous cryptography to different sensing infrastructures in these fields. In particular, generating strong cryptographic keys on such resource-constrained device depends on a lightweight and cryptographically secure random number generator. In this research work, we have introduced a new hardware chaos-based pseudorandom number generator, which is mainly based on the deletion of an Hamilton cycle within the $N$ -cube (or on the vectorial negation), plus one single permutation. We have rigorously proven the chaotic behavior and cryptographically secure property of the whole proposal: the mid-term eff…

Applied cryptography; Chaotic circuits; Constrained devices; Discrete dynamical systems; FPGA; Lightweight Cryptography; Random number generators; Statistical tests; Control and Systems Engineering; Information Systems; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic EngineeringHardware security moduleComputer scienceRandom number generationCryptography[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]02 engineering and technologyPseudorandom generatorConstrained devicesLightweight CryptographyChaotic circuits[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]PermutationRandom number generatorsStatistical tests0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringField-programmable gate arrayThroughput (business)FPGAPseudorandom number generatorGenerator (category theory)business.industry020208 electrical & electronic engineeringComputer Science Applications1707 Computer Vision and Pattern Recognition020206 networking & telecommunicationsDiscrete dynamical systems[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputer Science ApplicationsApplied cryptography[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Control and Systems EngineeringKey (cryptography)[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET][INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]businessComputer hardwareInformation SystemsIEEE Transactions on Industrial Informatics
researchProduct

Attractors/Basin of Attraction

2020

It is a controversial issue to decide who first coined the term “attractor”. According to Peter Tsatsanis, the editor of the English version of Prédire n’est pas expliquer, it was René Thom who first introduced such a term. It is necessary, however, to remember that Thom thought that it was first introduced by the American mathe- matician Steven Smale, “although Smale says it was Thom that coined the neolo- gism “attractor”“(Tsatsanis 2010: 63–64 n. 20). From this point of view, Bob Williams expressed a more cautious opinion by saying that “the word “attractor” was invented by these guys, Thom and Smale” (Cucker and Wong 2000: 183). But other mathematicians are of the opinion that the term …

Attractor Basin of Attraction Fixed Point Limit Cycle Torus Strange Attractors Dynamical SystemsPhilosophyAttractorEnglish versionMathematical economicsAttractionSettore M-FIL/05 - Filosofia E Teoria Dei LinguaggiNeologismTerm (time)
researchProduct

RISQUE ASSOCIE A L'UTILISATION DE LA LOI DE BENFORD POUR DETECTER DES VENTES FRAUDULEUSES DE BIENS INNOVANTS A LA MODE

2010

Benford's law has been promoted as providing the auditors with a turnkey solution for fraud detection. The purpose of this paper is to show it is not always possible to detect fraudulent sales with that law. We use sales in volume of game consoles in Japan (since 1989), in United-States, in France, in Germany and in United-Kingdom (since 2000). After reviewing briefly the literature and our study design, the chi-square test and the bias analysis were used to measure the goodness-of-fit to Benford's law. Despite the absence of actual fraud, these sale series of fashion goods are not significantly in conformity with Benford's law. Thus, for the detection of fraudulent sales in this sector, th…

Benford's lawfashion salesdetection of fraudnon-linear dynamical system.Loi de Benfordventes de biens à la modedétection de fraudesauditsystème dynamique non-linéairenon-linear dynamical system.[SHS.GESTION]Humanities and Social Sciences/Business administrationfashion salesdetection of fraudauditsystème dynamique non-linéaire[SHS.GESTION] Humanities and Social Sciences/Business administrationBenford's law[ SHS.GESTION ] Humanities and Social Sciences/Business administrationventes de biens à la modeLoi de Benforddétection de fraudes
researchProduct

Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos

2019

In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed…

BistabilityPopulationGeneral Physics and AstronomyDynamical Systems (math.DS)Fixed pointParameter spaceBiologyGeneralist and specialist speciesModels Biological01 natural sciencesStability (probability)010305 fluids & plasmas0103 physical sciencesFOS: MathematicsHumansQuantitative Biology::Populations and EvolutionComputer SimulationMathematics - Dynamical SystemsQuantitative Biology - Populations and Evolution010306 general physicsEvolutionary dynamicseducationMathematical Physicseducation.field_of_studyApplied MathematicsDegenerate energy levelsPopulations and Evolution (q-bio.PE)Statistical and Nonlinear Physics3. Good healthNonlinear DynamicsEvolutionary biologyFOS: Biological sciencesHost-Pathogen InteractionsVirusesVirus Physiological Phenomena
researchProduct

Overlapping self-affine sets of Kakeya type

2009

We compute the Minkowski dimension for a family of self-affine sets on the plane. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.

Class (set theory)Applied MathematicsGeneral Mathematics010102 general mathematicsMinkowski–Bouligand dimensionDynamical Systems (math.DS)Type (model theory)16. Peace & justice01 natural sciencesCombinatoricsSet (abstract data type)Mathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics28A80 37C45010307 mathematical physicsAffine transformationMathematics - Dynamical Systems0101 mathematicsMathematicsErgodic Theory and Dynamical Systems
researchProduct

Separation conditions on controlled Moran constructions

2017

It is well known that the open set condition and the positivity of the $t$-dimensional Hausdorff measure are equivalent on self-similar sets, where $t$ is the zero of the topological pressure. We prove an analogous result for a class of Moran constructions and we study different kinds of Moran constructions with this respect.

Class (set theory)Pure mathematicsAlgebra and Number Theory010102 general mathematicsSeparation (statistics)Zero (complex analysis)Open setDynamical Systems (math.DS)01 natural sciencesTopological pressure0103 physical sciencesFOS: MathematicsQuantitative Biology::Populations and EvolutionHausdorff measure010307 mathematical physicsMathematics - Dynamical Systems0101 mathematicsMathematicsFundamenta Mathematicae
researchProduct

On James Hyde's example of non-orderable subgroup of $\mathrm{Homeo}(D,\partial D)$

2020

In [Ann. Math. 190 (2019), 657-661], James Hyde presented the first example of non-left-orderable, finitely generated subgroup of $\mathrm{Homeo}(D,\partial D)$, the group of homeomorphisms of the disk fixing the boundary. This implies that the group $\mathrm{Homeo}(D,\partial D)$ itself is not left-orderable. We revisit the construction, and present a slightly different proof of purely dynamical flavor, avoiding direct references to properties of left-orders. Our approach allows to solve the analogue problem for actions on the circle.

CombinatoricsGroup (mathematics)Primary 37C85. Secondary 37E05 37E10 37E20[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]FOS: MathematicsBoundary (topology)Finitely-generated abelian groupGroup Theory (math.GR)Dynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematics - Group Theory[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics
researchProduct

Language in Complexity. The Emerging Meaning

2017

This contributed volume explores the achievements gained and the remaining puzzling questions by applying dynamical systems theory to the linguistic inquiry. In particular the book is divided into three parts, each one addressing of the following topics: a) Facing complexity in the right way: mathematics and complexity; b) Complexity and theory of language; c) From empirical observation to formal models: investigations of specifici linguistic phenomena, like enunciation, deixis, or the meaning of the metaphorical phrases.

Complex Systems Language Activity Dynamical Systems Emergence AttractorsSettore M-FIL/05 - Filosofia E Teoria Dei Linguaggi
researchProduct