Search results for " DYNAMICAL SYSTEM"
showing 10 items of 188 documents
Stochastic analysis of dynamical systems with delayed control forces
2006
Abstract Reduction of structural vibration in actively controlled dynamical system is usually performed by means of convenient control forces dependent of the dynamic response. In this paper the existent studies will be extended to dynamical systems subjected to non-normal delta-correlated random process with delayed control forces. Taylor series expansion of the control forces has been introduced and the statistics of the dynamical response have been obtained by means of the extended Ito differential rule. Numerical application provided shows the capabilities of the proposed method to analyze stochastic dynamic systems with delayed actions under delta-correlated process contrasting statist…
Statistical geometric affinity in human brain electric activity
2007
10 pages, 9 figures.-- PACS nrs.: 87.19.La; 05.45.Tp.-- ISI Article Identifier: 000246890100105
A short survey on nonlinear models of the classic Costas loop: rigorous derivation and limitations of the classic analysis
2015
Rigorous nonlinear analysis of the physical model of Costas loop --- a classic phase-locked loop (PLL) based circuit for carrier recovery, is a challenging task. Thus for its analysis, simplified mathematical models and numerical simulation are widely used. In this work a short survey on nonlinear models of the BPSK Costas loop, used for pre-design and post-design analysis, is presented. Their rigorous derivation and limitations of classic analysis are discussed. It is shown that the use of simplified mathematical models, and the application of non rigorous methods of analysis (e.g., simulation and linearization) may lead to wrong conclusions concerning the performance of the Costas loop ph…
Multiplicity of fixed points and growth of ε-neighborhoods of orbits
2012
We study the relationship between the multiplicity of a fixed point of a function g, and the dependence on epsilon of the length of epsilon-neighborhood of any orbit of g, tending to the fixed point. The relationship between these two notions was discovered before (Elezovic, Zubrinic, Zupanovic) in the differentiable case, and related to the box dimension of the orbit. Here, we generalize these results to non-differentiable cases introducing a new notion of critical Minkowski order. We study the space of functions having a development in a Chebyshev scale and use multiplicity with respect to this space of functions. With the new definition, we recover the relationship between multiplicity o…
Analysis of a slow–fast system near a cusp singularity
2016
This paper studies a slow fast system whose principal characteristic is that the slow manifold is given by the critical set of the cusp catastrophe. Our analysis consists of two main parts: first, we recall a formal normal form suitable for systems as the one studied here; afterwards, taking advantage of this normal form, we investigate the transition near the cusp singularity by means of the blow up technique. Our contribution relies heavily in the usage of normal form theory, allowing us to refine previous results. (C) 2015 Elsevier Inc. All rights reserved.
Pattern formation in clouds via Turing instabilities
2020
Pattern formation in clouds is a well-known feature, which can be observed almost every day. However, the guiding processes for structure formation are mostly unknown, and also theoretical investigations of cloud patterns are quite rare. From many scientific disciplines the occurrence of patterns in non-equilibrium systems due to Turing instabilities is known, i.e. unstable modes grow and form spatial structures. In this study we investigate a generic cloud model for the possibility of Turing instabilities. For this purpose, the model is extended by diffusion terms. We can show that for some cloud models, i.e special cases of the generic model, no Turing instabilities are possible. However,…
Planar maps whose second iterate has a unique fixed point
2007
Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…
Resonance between Cantor sets
2007
Let $C_a$ be the central Cantor set obtained by removing a central interval of length $1-2a$ from the unit interval, and continuing this process inductively on each of the remaining two intervals. We prove that if $\log b/\log a$ is irrational, then \[ \dim(C_a+C_b) = \min(\dim(C_a) + \dim(C_b),1), \] where $\dim$ is Hausdorff dimension. More generally, given two self-similar sets $K,K'$ in $\RR$ and a scaling parameter $s>0$, if the dimension of the arithmetic sum $K+sK'$ is strictly smaller than $\dim(K)+\dim(K') \le 1$ (``geometric resonance''), then there exists $r<1$ such that all contraction ratios of the similitudes defining $K$ and $K'$ are powers of $r$ (``algebraic resonance…
Dimensions of random affine code tree fractals
2014
We calculate the almost sure Hausdorff dimension for a general class of random affine planar code tree fractals. The set of probability measures describing the randomness includes natural measures in random $V$-variable and homogeneous Markov constructions.
Local dimensions of measures on infinitely generated self-affine sets
2014
We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. Furthermore the local dimension equals the minimum of the local Lyapunov dimension and the dimension of the space. We also give an estimate, that holds for all translation vectors, with only assuming the affine maps to be contractive.