6533b82cfe1ef96bd128ff5e

RESEARCH PRODUCT

Planar maps whose second iterate has a unique fixed point

Begoña AlarcónJosé Martínez-alfaroCarlos Gutierrez

subject

Discrete mathematics37G10; 37G15; 34K18Algebra and Number TheoryApplied Mathematics37G15Dynamical Systems (math.DS)Fixed point37G10Homothetic transformationPlanar graphSet (abstract data type)symbols.namesakeMathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicssymbolsEmbeddingDifferentiable functionMathematics - Dynamical Systems34K18AnalysisEigenvalues and eigenvectorsMathematics

description

Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) the interval [-1-a, 1+a]. Conditions under which Fix(F^n), with n>1, is at most unitary are considered.

https://doi.org/10.1080/10236190701698155