0000000000144640

AUTHOR

José Martínez-alfaro

Plane foliations with a saddle singularity

Abstract We study the set of planar vector fields with a unique singularity of hyperbolic saddle type. We found conditions to assure that a such vector field is topologically equivalent to a linear saddle. Furthermore, we describe the plane foliations associated to these vector fields. Such a foliation can be split in two subfoliations. One without restriction and another one that is topologically characterized by means of trees.

research product

Planar maps whose second iterate has a unique fixed point

Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…

research product

Singular levels and topological invariants of Morse Bott integrable systems on surfaces

Abstract We classify up to homeomorphisms closed curves and eights of saddle points on orientable closed surfaces. This classification is applied to Morse Bott foliations and Morse Bott integrable systems allowing us to define a complete invariant. We state also a realization Theorem based in two transformations and one generator (the foliation of the sphere with two centers).

research product

An upper bound of the index of an equilibrium point in the plane

Abstract We give an upper bound of the index of an isolated equilibrium point of a C 1 vector field in the plane. The vector field is decomposed in gradient and Hamiltonian components. This decomposition is related with the Loewner vector field. Associated to this decomposition we consider the set Π where the gradient and Hamiltonian components are linearly dependent. The number of branches of Π starting at the equilibrium point determines the upper bound of the index.

research product