6533b855fe1ef96bd12b0a68

RESEARCH PRODUCT

Singular levels and topological invariants of Morse Bott integrable systems on surfaces

José Martínez-alfaroRegilene OliveiraIngrid S. Meza-sarmiento

subject

Pure mathematicsIntegrable systemApplied Mathematics010102 general mathematicsMathematical analysisMorse code01 natural scienceslaw.inventionlawSaddle point0103 physical sciencesFoliation (geology)Topological invariants010307 mathematical physics0101 mathematicsInvariant (mathematics)Mathematics::Symplectic GeometryEQUAÇÕES DIFERENCIAIS ORDINÁRIASAnalysisCircle-valued Morse theoryMorse theoryMathematics

description

Abstract We classify up to homeomorphisms closed curves and eights of saddle points on orientable closed surfaces. This classification is applied to Morse Bott foliations and Morse Bott integrable systems allowing us to define a complete invariant. We state also a realization Theorem based in two transformations and one generator (the foliation of the sphere with two centers).

10.1016/j.jde.2015.09.008