0000000000568224

AUTHOR

Begoña Alarcón

showing 2 related works from this author

Hopf bifurcation at infinity for planar vector fields

2007

We study, from a new point of view, families of planar vector fields without singularities $ \{ X_{\mu}$  &nbsp:&nbsp  $-\varepsilon < \mu < \varepsilon\} $ defined on the complement of an open ball centered at the origin such that, at $\mu=0$, infinity changes from repellor to attractor, or vice versa. We also study a sort of local stability of some $C^1$ planar vector fields around infinity.

Hopf bifurcationDiscrete mathematicsApplied Mathematicsmedia_common.quotation_subjectTEORIA ERGÓDICABifurcation diagramInfinitysymbols.namesakePitchfork bifurcationBifurcation theoryAttractorsymbolsDiscrete Mathematics and CombinatoricsFundamental vector fieldVector fieldAnalysisMathematical physicsMathematicsmedia_common
researchProduct

Planar maps whose second iterate has a unique fixed point

2007

Let a&gt;0, F: R^2 -&gt; R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…

Discrete mathematics37G10; 37G15; 34K18Algebra and Number TheoryApplied Mathematics37G15Dynamical Systems (math.DS)Fixed point37G10Homothetic transformationPlanar graphSet (abstract data type)symbols.namesakeMathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicssymbolsEmbeddingDifferentiable functionMathematics - Dynamical Systems34K18AnalysisEigenvalues and eigenvectorsMathematicsJournal of Difference Equations and Applications
researchProduct