Search results for " Damage"

showing 10 items of 1139 documents

Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

2018

Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L-1, which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (infra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis o…

0301 basic medicineAnalyteLipid peroxidationUrineUrineIsoprostanesAnalytical ChemistryLipid peroxidation03 medical and health scienceschemistry.chemical_compoundIsoprostaneAlzheimer DiseaseTandem Mass SpectrometrymedicineHumansNeuroprostanesCognitive impairmentFuransChromatography High Pressure LiquidDetection limitChromatographyMass spectrometryIsofuranBiomarkerReceptors Prostaglandin E EP2 Subtypemedicine.disease030104 developmental biologychemistryPotential biomarkers[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]NeuroprostanesLipid PeroxidationNeurological damageAlzheimer's disease[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyBiomarkersTalanta
researchProduct

Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells.

2016

Zearalenone (ZEA) and its metabolites (α-zearalenol; α-ZOL, β-zearalenol; β-ZOL) are secondary metabolites of Fusarium fungi that produce cell injury. The present study explores mycotoxin-induced cell damage and cellular protection mechanisms in CHO-K1 cells. Cytotoxicity has been determined by reactive oxygen species (ROS) production and DNA damage. ROS production was determined using the fluorescein assay and DNA strand breakage by comet assay. Intracellular protection systems were glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). The results demonstrated that all mycotoxins increased the ROS levels up to 5.3-fold the control levels in CHO-K1 …

0301 basic medicineAntioxidantDNA damagemedicine.medical_treatmentImmunoblottingCHO CellsToxicologyAntioxidantsSuperoxide dismutase03 medical and health scienceschemistry.chemical_compoundCricetulusCricetinaemedicineAnimalsEstrogens Non-SteroidalCell damagechemistry.chemical_classificationReactive oxygen speciesGlutathione PeroxidasebiologySuperoxide DismutaseGlutathione peroxidasefood and beveragesGeneral MedicineGlutathionemedicine.diseaseCatalaseGlutathioneComet assay030104 developmental biologychemistryBiochemistrybiology.proteinZearalenoneZeranolComet AssayReactive Oxygen SpeciesOxidation-ReductionFood ScienceDNA DamageFood and chemical toxicology : an international journal published for the British Industrial Biological Research Association
researchProduct

Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry ye…

2018

Several yeast species, belonging to Saccharomyces and non-Saccharomyces genera, play fundamental roles during spontaneous must grape fermentation, and recent studies have shown that mixed fermentations, co-inoculated with S. cerevisiae and non-Saccharomyces strains, can improve wine organoleptic properties. During active dry yeast (ADY) production, antioxidant systems play an essential role in yeast survival and vitality as both biomass propagation and dehydration cause cellular oxidative stress and negatively affect technological performance. Mechanisms for adaptation and resistance to desiccation have been described for S. cerevisiae, but no data are available on the physiology and oxidat…

0301 basic medicineAntioxidantEstrès oxidatiumedicine.medical_treatmentGlutathione reductasenon-Saccharomyces yeastsProtein oxidationBiochemistry Genetics and Molecular Biology (miscellaneous)MicrobiologyApplied Microbiology and BiotechnologySaccharomyces03 medical and health scienceschemistry.chemical_compoundFood-grade argan oilVirologyOxidative damageGeneticsmedicineFood sciencelcsh:QH301-705.5Molecular BiologyActive dry wine yeastsantioxidant defensebiologyfood and beveragesCell BiologyGlutathionebiology.organism_classificationTrehaloseYeast030104 developmental biologylcsh:Biology (General)chemistryViniculturaParasitologyFermentationAntioxidant defencesMicrobial Cell
researchProduct

In vitro mechanisms of Beauvericin toxicity: A review.

2017

Beauvericin (BEA) is a mycotoxin produced by many species of fungus Fusarium and by Beauveria bassiana; BEA is a natural contaminant of cereals and cereals based products and possesses a wide variety of biological properties. The mechanism of action seems to be related to its ionophoric activity, that increases ion permeability in biological membranes. As a consequence, BEA causes cytotoxicity in several cell lines and is capable to produce oxidative stress at molecular level. Moreover, BEA is genotoxic (produces DNA fragmentation, chromosomal aberrations and micronucleus) and causes apoptosis with the involvement of mitochondrial pathway. However, several antioxidant mechanisms protect cel…

0301 basic medicineAntioxidantmedicine.medical_treatmentApoptosisToxicologymedicine.disease_cause03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyFusariumDepsipeptidesmedicineAnimalsHumansCytotoxicityMycotoxin04 agricultural and veterinary sciencesGeneral MedicineMycotoxins040401 food scienceBeauvericinOxidative Stress030104 developmental biologychemistryBiochemistryToxicityDNA fragmentationMicronucleusOxidative stressFood ScienceDNA DamageFood and chemical toxicology : an international journal published for the British Industrial Biological Research Association
researchProduct

Theabrownin triggersDNAdamage to suppress human osteosarcoma U2OScells by activating p53 signalling pathway

2018

Abstract Osteosarcoma becomes the second leading cause of cancer death in the younger population. Current outcomes of chemotherapy on osteosarcoma were unsatisfactory to date, demanding development of effective therapies. Tea is a commonly used beverage beneficial to human health. As a major component of tea, theabrownin has been reported to possess anti‐cancer activity. To evaluate its anti‐osteosarcoma effect, we established a xenograft model of zebrafish and employed U2OS cells for in vivo and in vitro assays. The animal data showed that TB significantly inhibited the tumour growth with stronger effect than that of chemotherapy. The cellular data confirmed that TB‐triggered DNA damage an…

0301 basic medicineApoptosisCatechinHistones0302 clinical medicineRNA Small InterferingZebrafisheducation.field_of_studyCaspase 3ChemistryCell CycleGene Expression Regulation NeoplasticLarva030220 oncology & carcinogenesisMolecular MedicineOsteosarcomaOriginal ArticlePoly(ADP-ribose) PolymerasesSignal TransductionCell SurvivalDNA damagePoly ADP ribose polymerasePopulationBone NeoplasmsCaspase 303 medical and health sciencesAnimal dataosteosarcomaCell Line TumormedicineAnimalsHumanstheabrownineducationP53OsteoblastsMesenchymal Stem CellsOriginal ArticlesCell Biologymedicine.diseaseAntineoplastic Agents PhytogenicXenograft Model Antitumor AssaysKi-67 Antigen030104 developmental biologyApoptosisCell cultureCancer researchDNA damageCisplatinTumor Suppressor Protein p53Journal of Cellular and Molecular Medicine
researchProduct

Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation

2017

The beneficial health properties of the Mediterranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW48…

0301 basic medicineCancer ResearchCarcinoma HepatocellularHepatocellular carcinomaOleocanthalExtra-virgin olive oilCellApoptosisCyclopentane Monoterpenes03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePhenolsOleocanthalmedicineHumansCyclooxygenase InhibitorsViability assayOlive OilCaspaseCell ProliferationAldehydesbiologyCell growthLiver NeoplasmsApoptosiHep G2 CellsCell cycledigestive system diseasesColorectal carcinoma030104 developmental biologymedicine.anatomical_structureOncologychemistryApoptosisCell culture030220 oncology & carcinogenesisImmunologybiology.proteinCancer researchReactive oxygen specieColorectal NeoplasmsReactive Oxygen SpeciesDNA DamageInternational Journal of Oncology
researchProduct

Knockdown of hnRNPK leads to increased DNA damage after irradiation and reduces survival of tumor cells.

2017

Radiotherapy is an important treatment option in the therapy of multiple tumor entities among them head and neck squamous cell carcinoma (HNSCC). However, the success of radiotherapy is limited by the development of radiation resistances. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a cofactor of p53 and represents a potential target for radio sensitization of tumor cells. In this study, we analyzed the impact of hnRNPK on the DNA damage response after gamma irradiation. By yH2AX foci analysis, we found that hnRNPK knockdown increases DNA damage levels in irradiated cells. Tumor cells bearing a p53 mutation showed increased damage levels and delayed repair. Knockdown of hnRNPK appl…

0301 basic medicineCancer ResearchDNA damageCell Survivalmedicine.medical_treatmentmedicine.disease_causeRadiation ToleranceHeterogeneous-Nuclear Ribonucleoprotein KHistones03 medical and health sciences0302 clinical medicineCell Line TumormedicineCarcinomaGene Knockdown TechniquesHumansMutationGene knockdownChemistrySquamous Cell Carcinoma of Head and NeckStem CellsGeneral Medicinemedicine.diseaseHead and neck squamous-cell carcinomaRadiation therapy030104 developmental biologyCell cultureHead and Neck Neoplasms030220 oncology & carcinogenesisGene Knockdown TechniquesCancer researchCarcinoma Squamous CellTumor Suppressor Protein p53DNA DamageCarcinogenesis
researchProduct

Targeting the chromosomal passenger complex subunit INCENP induces polyploidization, apoptosis and senescence in neuroblastoma

2019

Abstract Chromosomal passenger complex (CPC) has been demonstrated to be a potential target of cancer therapy by inhibiting Aurora B or survivin in different types of cancer including neuroblastoma. However, chemical inhibition of either Aurora B or survivin does not target CPC specifically due to off-target effects or CPC-independent activities of these two components. In a previous chromatin-focused siRNA screen, we found that neuroblastoma cells were particularly vulnerable to loss of INCENP, a gene encoding a key scaffolding component of the CPC. In this study, INCENP was highly expressed by neuroblastoma cells, and its expression decreased following retinoic acid–induced neuroblastoma …

0301 basic medicineCancer ResearchINCENP/CPC/Polyploidy/DNA damage/Apoptosis/SenescenceCarcinogenesisChromosomal Proteins Non-HistoneAurora B kinaseApoptosisBiologymedicine.disease_causeArticlePolyploidy03 medical and health sciencesMiceNeuroblastoma0302 clinical medicineNeuroblastomaSurvivinmedicineGene silencingAnimalsHumansneoplasmsCellular SenescenceINCENPmedicine.disease030104 developmental biologyOncologyApoptosisTumor progression030220 oncology & carcinogenesisCancer researchHeterograftsCarcinogenesis
researchProduct

Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis

2017

Increased oxidative stress has been suggested to initiate and promote tumorigenesis by inducing DNA damage and to suppress tumor development by triggering apoptosis and senescence. The contribution of individual cell types in the tumor microenvironment to these contrasting effects remains poorly understood. We provide evidence that during intestinal tumorigenesis, myeloid cell-derived H2O2 triggers genome-wide DNA mutations in intestinal epithelial cells to stimulate invasive growth. Moreover, increased reactive oxygen species (ROS) production in myeloid cells initiates tumor growth in various organs also in the absence of a carcinogen challenge in a paracrine manner. Our data identify an i…

0301 basic medicineCancer ResearchMyeloidDNA damageApoptosismedicine.disease_causeMice03 medical and health sciencesParacrine signallingmedicineAnimalsMyeloid Cellschemistry.chemical_classificationReactive oxygen speciesTumor microenvironmentChemistryEpithelial CellsHydrogen PeroxideCell BiologyMice Mutant StrainsCell biologyOxidative Stress030104 developmental biologymedicine.anatomical_structureOncologyMutagenesisMutationTumor necrosis factor alphaReactive Oxygen SpeciesCarcinogenesisOxidative stressDNA DamageSignal TransductionCancer Cell
researchProduct

A common SNP in the UNG gene decreases ovarian cancer risk in BRCA2 mutation carriers

2018

Single nucleotide polymorphisms (SNPs) in DNA glycosylase genes involved in the base excision repair (BER) pathway can modify breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We previously found that SNP rs34259 in the uracil-DNA glycosylase gene (UNG) might decrease ovarian cancer risk in BRCA2 mutation carriers. In the present study, we validated this finding in a larger series of familial breast and ovarian cancer patients to gain insights into how this UNG variant exerts its protective effect. We found that rs34259 is associated with significant UNG downregulation and with lower levels of DNA damage at telomeres. In addition, we found that this SNP is associated with…

0301 basic medicineCancer Researchmedicine.medical_specialtyendocrine system diseasesUracil-DNA glycosylaseEuropean Regional Development Fundlcsh:RC254-282Polymorphism Single Nucleotide03 medical and health sciences0302 clinical medicineBRCA2 MutationRisk FactorsPolitical scienceHealthy volunteersGeneticsmedicineHumansSNPGenetic Predisposition to DiseaseUracil-DNA Glycosidaseskin and connective tissue diseasesResearch ArticlesBRCA2 ProteinOvarian NeoplasmsNetwork onOxidative stress susceptibilityGeneral MedicineMiddle Agedlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseBRCA2female genital diseases and pregnancy complicationsuracil‐DNA glycosylase030104 developmental biologyCancer risk modifierOncology030220 oncology & carcinogenesisFamily medicineMutationMolecular MedicineDNA damageFemaleChristian ministryTelomere damageOvarian cancerHuman cancerResearch Article
researchProduct