Search results for " Deep Learning"

showing 10 items of 30 documents

Development of a Novel Object Detection System Based on Synthetic Data Generated from Unreal Game Engine

2022

This paper presents a novel approach to training a real-world object detection system based on synthetic data utilizing state-of-the-art technologies. Training an object detection system can be challenging and time-consuming as machine learning requires substantial volumes of training data with associated metadata. Synthetic data can solve this by providing unlimited desired training data with automatic generation. However, the main challenge is creating a balanced dataset that closes the reality gap and generalizes well when deployed in the real world. A state-of-the-art game engine, Unreal Engine 4, was used to approach the challenge of generating a photorealistic dataset for deep learnin…

Fluid Flow and Transfer ProcessesVDP::Teknologi: 500Process Chemistry and TechnologyGeneral Engineeringcomputer vision; deep learning; domain randomization; object detection; NDDS; PyTorch; sim2real; synthetic data; Unreal Engine; YOLOv5General Materials ScienceVDP::Matematikk og Naturvitenskap: 400InstrumentationComputer Science ApplicationsApplied Sciences
researchProduct

Farm-Scale Crop Yield Prediction from Multi-Temporal Data Using Deep Hybrid Neural Networks

2021

Farm-scale crop yield prediction is a natural development of sustainable agriculture, producing a rich amount of food without depleting and polluting environmental resources. Recent studies on crop yield production are limited to regional-scale predictions. The regional-scale crop yield predictions usually face challenges in capturing local yield variations based on farm management decisions and the condition of the field. For this research, we identified the need to create a large and reusable farm-scale crop yield production dataset, which could provide precise farm-scale ground-truth prediction targets. Therefore, we utilise multi-temporal data, such as Sentinel-2 satellite images, weath…

hybrid neural networkSVDP::Landbruks- og Fiskerifag: 900::Landbruksfag: 910farm-scale crop yield prediction; deep learning; hybrid neural network; convolutional neural network; recurrent neural network; Sentinel-2 satellite remote sensing datadeep learningconvolutional neural networkSentinel-2 satellite remote sensing datarecurrent neural networkAgriculturefarm-scale crop yield predictionAgronomy and Crop ScienceAgronomy
researchProduct

Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion

2020

Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based reflectance models is an interesting approach for estimating chlorophyll concentrations that are good indicators of vegetation health. The objective of this study was to develop a novel approach for retrieving chlorophyll a and b values from remotely sensed data by inverting the stochastic model of leaf optical properties using a one-dimensional convolutional neural network. The inversion results and retrieved values are validated in two ways: A classical machine learning val…

Chlorophyll boptical propertiesChlorophyll aklorofylli010504 meteorology & atmospheric sciencesCorrelation coefficientStochastic modelling0211 other engineering and technologiesconvolutional neural network02 engineering and technologyneuroverkotoptiset ominaisuudet01 natural sciencesConvolutional neural networkchemistry.chemical_compoundchlorophylllcsh:Scienceoptical properties; convolutional neural network; deep learning; chlorophyll; stochastic modeling; physical parameter retrieval; forestry021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingstokastiset prosessitbusiness.industryDeep learningspektrikuvausforestryHyperspectral imagingdeep learningmetsänarviointikoneoppiminenchemistryChlorophyllGeneral Earth and Planetary Scienceslcsh:QArtificial intelligencekaukokartoitusmetsänhoitobusinessphysical parameter retrievalstochastic modelingRemote Sensing; Volume 12; Issue 2; Pages: 283
researchProduct

A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans

2019

Abstract Many studies have shown that epicardial fat is associated with a higher risk of heart diseases. Accurate epicardial adipose tissue quantification is still an open research issue. Considering that manual approaches are generally user-dependent and time-consuming, computer-assisted tools can considerably improve the result repeatability as well as reduce the time required for performing an accurate segmentation. Unfortunately, fully automatic strategies might not always identify the Region of Interest (ROI) correctly. Moreover, they could require user interaction for handling unexpected events. This paper proposes a semi-automatic method for Epicardial Fat Volume (EFV) segmentation a…

AdultMale0301 basic medicineComputer scienceAdipose tissueHealth InformaticsCalcium score scans; Cardiac adipose tissue quantification; Coronary computed tomography angiography scans; Epicardial fat volume; Fat density quartiles; Semi-automatic segmentationFat density quartilesCorrelation03 medical and health sciencesComputer-AssistedDeep Learning0302 clinical medicineFat density quartileRegion of interestImage Interpretation Computer-AssistedCalcium score scansHumansSegmentationCalcium score scans; Cardiac adipose tissue quantification; Coronary computed tomography angiography scans; Epicardial fat volume; Fat density quartiles; Semi-automatic segmentation; Adipose Tissue; Adult; Algorithms; Deep Learning; Female; Humans; Image Interpretation Computer-Assisted; Male; Middle Aged; Pericardium; Tomography X-Ray ComputedImage InterpretationTomographyEpicardial fat volumeSemi-automatic segmentationbusiness.industryCalcium score scanPattern recognitionRepeatabilityMiddle AgedCoronary computed tomography angiography scansCoronary computed tomography angiography scanX-Ray ComputedComputer Science Applications030104 developmental biologyAdipose TissueCardiac adipose tissue quantificationQuartileEpicardial adipose tissueFemaleSemi automaticArtificial intelligenceTomography X-Ray ComputedSettore MED/36 - Diagnostica Per Immagini E RadioterapiabusinessPericardiumAlgorithms030217 neurology & neurosurgeryComputers in Biology and Medicine
researchProduct

Fingerprint classification based on deep learning approaches: Experimental findings and comparisons

2021

Biometric classification plays a key role in fingerprint characterization, especially in the identification process. In fact, reducing the number of comparisons in biometric recognition systems is essential when dealing with large-scale databases. The classification of fingerprints aims to achieve this target by splitting fingerprints into different categories. The general approach of fingerprint classification requires pre-processing techniques that are usually computationally expensive. Deep Learning is emerging as the leading field that has been successfully applied to many areas, such as image processing. This work shows the performance of pre-trained Convolutional Neural Networks (CNNs…

Physics and Astronomy (miscellaneous)BiometricsComputer scienceGeneral Mathematicsfingerprint featuresfingerprint classification; deep learning; convolutional neural networks; fingerprint featuresConvolutional neural networks Deep learning Fingerprint classification Fingerprint featuresImage processing02 engineering and technologyConvolutional neural networkField (computer science)fingerprint classification020204 information systemsconvolutional neural networksQA1-9390202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)Reliability (statistics)business.industryDeep learningFingerprint (computing)deep learningPattern recognitionIdentification (information)Chemistry (miscellaneous)Convolutional neural networks; Deep learning; Fingerprint classification; Fingerprint features020201 artificial intelligence & image processingArtificial intelligencebusinessMathematics
researchProduct

Deep learning network for exploiting positional information in nucleosome related sequences

2017

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

0301 basic medicineComputer scienceSpeech recognitionCell02 engineering and technologyComputational biologyGenomeDNA sequencing03 medical and health scienceschemistry.chemical_compoundDeep Learning0202 electrical engineering electronic engineering information engineeringmedicineNucleosomeNucleotideGeneSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionichemistry.chemical_classificationSequenceSettore INF/01 - Informaticabiologybusiness.industryDeep learningnucleosomebiology.organism_classificationSubstringChromatinIdentification (information)030104 developmental biologymedicine.anatomical_structurechemistry020201 artificial intelligence & image processingEukaryoteNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksArtificial intelligencebusinessDNA
researchProduct

Estimating Tree Health Decline Caused by Ips typographus L. from UAS RGB Images Using a Deep One-Stage Object Detection Neural Network

2022

Various biotic and abiotic stresses are causing decline in forest health globally. Presently, one of the major biotic stress agents in Europe is the European spruce bark beetle (Ips typographus L.) which is increasingly causing widespread tree mortality in northern latitudes as a consequence of the warming climate. Remote sensing using unoccupied aerial systems (UAS) together with evolving machine learning techniques provide a powerful tool for fast-response monitoring of forest health. The aim of this study was to investigate the performance of a deep one-stage object detection neural network in the detection of damage by I. typographus in Norway spruce trees using UAS RGB images. A Scaled…

bark beetlekirjanpainaja (kaarnakuoriaiset)syväoppiminendeep learningmonitorointiobject detectionneuroverkotmiehittämättömät ilma-aluksetdronetree healthmetsätremote sensingkoneoppiminenbark beetle; deep learning; drone; object detection; remote sensing; tree healthmetsätuhotGeneral Earth and Planetary Scienceskaukokartoitusmetsäkuusihyönteistuhotestimointi
researchProduct

De novo liquid biopsy and radio genomic diagnostic approach with combined deep learning artificial neural networks for NSCLC

2022

Each year, the mortality rate and incidence of non-small cell lung cancer (NSCLC) are dramatically increasing. The introduction of liquid biopsy in the clinical practice of NSCLC has completely revolutionized the approach to such neoplasm since is generally detected through complex and invasive procedures and unfortunately at advanced stages. The importance and innovation of liquid biopsy are linked with the possibility of cancer detection at every stage, adjuvant treatment, resistance genotyping, systematic initiation of treatment, minimal residual disease, early detection of relapse, and screening of NSCLC. Circulating tumor DNA (ctDNA) is now emerging as a non-invasive biomarker that wil…

Radio Genomic NSCLC Deep Learning Artificial Neural networks Liquid Biopsy Diagnosis
researchProduct

Detection of Hate Speech Spreaders using Convolutional Neural Networks

2021

In this paper we describe a deep learning model based on a Convolutional Neural Network (CNN). The model was developed for the Profiling Hate Speech Spreaders (HSSs) task proposed by PAN 2021 organizers and hosted at the 2021 CLEF Conference. Our approach to the task of classifying an author as HSS or not (nHSS) takes advantage of a CNN based on a single convolutional layer. In this binary classification task, on the tests performed using a 5-fold cross validation, the proposed model reaches a maximum accuracy of 0.80 on the multilingual (i.e., English and Spanish) training set, and a minimum loss value of 0.51 on the same set. As announced by the task organizers, the trained model presente…

Hate Speech Deep Learning Author Profiling Convolutional Neural Network Word EmbeddingDeep LearningEnglishWord EmbeddingTwitterHate SpeechAuthor ProfilingConvolutional Neural NetworkSpanish
researchProduct

Recurrent Deep Neural Networks for Nucleosome Classification

2020

Nucleosomes are the fundamental repeating unit of chromatin. A nucleosome is an 8 histone proteins complex, in which approximately 147–150 pairs of DNA bases bind. Several biological studies have clearly stated that the regulation of cell type-specific gene activities are influenced by nucleosome positioning. Bioinformatic studies have improved those results showing proof of sequence specificity in nucleosomes’ DNA fragment. In this work, we present a recurrent neural network that uses nucleosome sequence features representation for their classification. In particular, we implement an architecture which stacks convolutional and long short-term memory layers, with the main purpose to avoid t…

0301 basic medicineSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazionibiologySettore INF/01 - InformaticaComputer scienceComputational biologyChromatin03 medical and health scienceschemistry.chemical_compound030104 developmental biologyHistoneRecurrent neural networkchemistryFragment (logic)biology.proteinNucleosomeNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksGeneDNASequence (medicine)
researchProduct