Search results for " Defects"

showing 10 items of 294 documents

Luminescence mechanisms of defective ZnO nanoparticles.

2016

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Ra…

Materials sciencePhotoluminescenceGeneral Physics and AstronomyNanotechnology02 engineering and technologyElectrontime resolved photoluminescence010402 general chemistry01 natural sciencessymbols.namesakeLattice constantPhysical and Theoretical ChemistryHigh-resolution transmission electron microscopyRamanFIS/03 - FISICA DELLA MATERIAWurtzite crystal structurebusiness.industrySettore FIS/01 - Fisica Sperimentale021001 nanoscience & nanotechnology0104 chemical sciencesAbsorption edgeZnO nanoparticles laser ablation Luminescence microscopy excitons defectssymbolsTEMZnOOptoelectronicsoxide nanoparticle0210 nano-technologybusinessRaman spectroscopyLuminescencePhysical chemistry chemical physics : PCCP
researchProduct

Visible-ultraviolet vibronic emission of silica nanoparticles

2014

We report the study of the visible-ultraviolet emission properties and the structural features of silica nanoparticles prepared through a laboratory sol-gel technique. Atomic force microscopy, Raman and Infrared investigations highlighted the 10 nm size, purity and porosity of the obtained nanoparticles. By using time resolved photoluminescence techniques in air and in a vacuum we were able to single out two contributions in the visible emission: the first, stable in both atmospheres, is a typical fast blue band centered around 2.8 eV; the second, only observed in a vacuum around the 3.0-3.5 eV range, is a vibrational progression with two phonon modes at 1370 cm(-1) and 360 cm(-1). By fully…

Materials sciencePhotoluminescenceSpectrophotometry InfraredSurface PropertiesInfraredPhononsilica nanoparticles surface defects phonon-coupling photoluminescenceAnalytical chemistryGeneral Physics and AstronomyNanoparticleMicroscopy Atomic ForceSpectrum Analysis Ramanmedicine.disease_causesymbols.namesakemedicineParticle SizePhysical and Theoretical ChemistryPorositySilicon DioxidesymbolsNanoparticlesSpectrophotometry UltravioletLuminescenceRaman spectroscopyPorosityUltravioletPhys. Chem. Chem. Phys.
researchProduct

Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure

2021

The nature of the radiation-induced point defects in amorphous silica is investigated through online photoluminescence (PL) under high intensity ultrashort laser pulses. Using 1030 nm femtosecond laser pulses with a repetition rate of 1 kHz, it is possible to study the induced color centers through their PL signatures monitored during the laser exposure. Their generation is driven by the nonlinear absorption of the light related to the high pulse peak powers provided by femtosecond laser, allowing to probe the optical properties of the laser exposed region. The experiment is conducted as a function of the laser pulse power in samples with different OH contents. The results highlight the dif…

Materials sciencePhotoluminescenceamorphous silicastructural modificationsSilicon dioxide02 engineering and technology01 natural scienceschemistry.chemical_compoundonline photoluminescence0103 physical sciencesMaterials Chemistrypoint defectsElectrical and Electronic Engineering010306 general physicsfemtosecond lasersComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]business.industrySettore FIS/01 - Fisica SperimentaleSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsCrystallographic defectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryFemtosecondOptoelectronicsLaser exposureAmorphous silica0210 nano-technologybusiness
researchProduct

Recombination luminescence of X-ray induced paramagnetic defects in BaY2F8

2020

This research is funded by the Latvian Council of Science , project “Novel transparent nanocomposite oxyfluoride materials for optical applications”, project No. LZP-2018/1–0335 . The crystal growth research was funded by the CNPq (Brazil), project NO 421581/2016–6 .

Materials scienceRecombination luminescenceBiophysics02 engineering and technologyElectron010402 general chemistry01 natural sciencesBiochemistryMolecular physicsRadiation defectsSpectral linelaw.inventionParamagnetismlawElectron paramagnetic resonance (EPR):NATURAL SCIENCES:Physics [Research Subject Categories]IrradiationElectron paramagnetic resonanceBaY2F8General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and Optics0104 chemical sciencesOptically detected magnetic resonance (ODMR)0210 nano-technologyLuminescenceSingle crystalRecombinationJournal of Luminescence
researchProduct

Hydrogen-Related Paramagnetic Centers in Ge-Doped Sol-Gel Silica Induced by γ-Ray Irradiation

2006

We have studied the generation mechanisms of H(II) paramagnetic centers in Ge-doped silica by investigating up to 104 mol ppm sol-gel Ge-doped silica materials. We have considered materials with the same concentrations of Ge but that are produced by two different densification routes that give rise to different concentrations of Ge-related oxygen deficient centers (GeODC(II)). These centers are characterized by an optical absorption band at ∼5.2 eV (B2 β band) and two related emissions at ∼3.2 eV and ∼4.3 eV. The GeODC(II) content was estimated by absorption and emission measurements. The H(II) centers were induced by room temperature γ-ray irradiation and their concentration was determined…

Materials scienceSilica gelDopingAnalytical chemistryGeneral ChemistryCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionBiomaterialschemistry.chemical_compoundParamagnetismchemistrylawAbsorption bandMaterials ChemistryCeramics and CompositesIrradiationAbsorption (chemistry)Electron paramagnetic resonancesol-gel glasses aerogel germanium doping germanium defects photosensitivityNuclear chemistrySol-gelJournal of Sol-Gel Science and Technology
researchProduct

Evaluation of the Performance of Published Point Defect Parameter Sets in Cone and Body Phase of a 300 mm Czochralski Silicon Crystal

2021

Prediction and adjustment of point defect (vacancies and self-interstitials) distribution in silicon crystals is of utmost importance for microelectronic applications. The simulation of growth processes is widely applied for process development and quite a few different sets of point defect parameters have been proposed. In this paper the transient temperature, thermal stress and point defect distributions are simulated for 300 mm Czochralski growth of the whole crystal including cone and cylindrical growth phases. Simulations with 12 different published point defect parameter sets are compared to the experimentally measured interstitial–vacancy boundary. The results are evaluated for stand…

Materials scienceSiliconGeneral Chemical EngineeringPhase (waves)chemistry.chemical_element02 engineering and technology01 natural sciencesInorganic ChemistryCrystalMonocrystalline silicon0103 physical sciencesheat transfercomputer simulationpoint defectsGeneral Materials SciencePoint (geometry)010302 applied physicsEquilibrium pointCrystallographyCzochralskisilicon021001 nanoscience & nanotechnologyCondensed Matter PhysicsCrystallographic defectthermal stressComputational physicschemistryQD901-999Heat transfer0210 nano-technologyCrystals
researchProduct

Luminescence of silicon Dioxide — silica glass, α-quartz and stishovite

2011

Abstract This paper compares the luminescence of different modifications of silicon dioxide — silica glass, α-quartz crystal and dense octahedron structured stishovite crystal. Under x-ray irradiation of pure silica glass and pure α-quartz crystal, only the luminescence of self-trapped exciton (STE) is detected, excitable only in the range of intrinsic absorption. No STE luminescence was detected in stishovite since, even though its luminescence is excitable below the optical gap, it could not be ascribed to a self-trapped exciton. Under ArF laser excitation of pure α-quartz crystal, luminescence of a self-trapped exciton was detected under two-photon excitation. In silica glass and stishov…

Materials scienceSiliconSilicon dioxideExcitonPhysicsQC1-999Analytical chemistryGeneral Physics and Astronomychemistry.chemical_elementCrystal growthCrystallographic defectquartzstishovitechemistry.chemical_compoundsilica glasschemistryluminescencepoint defectsLuminescenceQuartzStishoviteOpen Physics
researchProduct

Ultrasonic phased array inspection of wire plus arc additive manufacture samples using conventional and total focusing method imaging approaches

2019

In this study, three aluminium samples produced by wire + arc additive manufacture (WAAM) are inspected using ultrasonic phased array technology. Artificial defects are machined using a centre drill, ø 3 mm, and electrical discharge machining (EDM), ø 0.5-1 mm, in a cylindrical through-hole topology. The samples are first inspected using a single-element wheel probe mounted on a KUKA robot in order to investigate the feasibility of using a conventional ultrasonic transducer approach. Unfortunately, the wheel probe is found to be unsuitable for scanning the WAAM specimens and ultrasonic phased arrays are employed next. The set-up includes 5 MHz and 10 MHz arrays (128 elements) in direct cont…

Materials sciencebusiness.product_categoryartificial defectsArtificial defects Full matrix capture (FMC) Total focusing method (TFM) Ultrasonic phased array Wire + arc additive manufacture (WAAM)Phased arrayApertureController (computing)AcousticsTK0211 other engineering and technologies02 engineering and technologytotal focusing method (TFM)01 natural sciencesSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineMachiningwire plus arc additive manufacture (WAAM)0103 physical sciencesMaterials Chemistry010301 acoustics021103 operations researchDrillMechanical EngineeringMetals and Alloysfull matrix capture (FMC)Sample (graphics)Wedge (mechanical device)Mechanics of Materialsultrasonic phased arrayUltrasonic sensorbusiness
researchProduct

Rippling of two-dimensional materials by line defects

2020

Two-dimensional materials and their mechanical properties are known to be profoundly affected by rippling deformations. However, although ripples are fairly well understood, less is known about their origin and controlled modification. Here, motivated by recent reports of laser-controlled creation of line defects in graphene, we investigate how line defects could be used to control rippling in graphene and other two-dimensional materials. By sequential multi-scale coupling of density-functional tight-binding and continuum elasticity simulations, we quantify the amount of rippling when the number and the cumulative length of the line defects increase. Simulations show that elastic sheets wit…

Materials sciencemechanical deformationelastic modulus02 engineering and technology01 natural scienceslaw.inventionlaw0103 physical sciencesgrafeeniElasticity (economics)materiaalitiede010306 general physicsSofteningCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsline defectsGraphenebending021001 nanoscience & nanotechnologykimmoisuusfysikaaliset ominaisuudetLine defectsNonlinear systemMultiscale couplingRipplingkiinteän olomuodon fysiikka0210 nano-technologyPhysical Review B
researchProduct

Periodontal disease affecting tooth furcations. A review of the treatments available

2007

The molars are the teeth that suffer the greatest periodontal destruction in untreated patients. When periodontal disease affects the furcation of a tooth, the chance that it will be lost increases considerably. An increase in the exposed root surface, anatomical peculiarities and irregularities of the furcation surface all favor the growth of bacteria. These problems make it harder for the patient to maintain hygiene, and impede adequate treatment. The treatment of furcations affected by periodontal disease is one of the most difficult problems for the general dentist and periodontist. The motivation of both the attending professional and of the patient are therefore of great importance. N…

MolarOrthodonticsRoot surfacePeriodontistbusiness.industryFurcation DefectsDentistryGeneral dentist:CIENCIAS MÉDICAS [UNESCO]Severity of Illness IndexOtorhinolaryngologyPeriodontal diseaseUNESCO::CIENCIAS MÉDICASHumansMedicineSurgerybusinessGeneral DentistryMedicina Oral Patología Oral y Cirugia Bucal
researchProduct