Search results for " Drug resistance"

showing 10 items of 207 documents

Substrate Specificity of Aglaia loheri Active Isolate towards P-glycoprotein in Multidrug-Resistant Cancer Cells

2016

Multidrug resistance (MDR) is a major contributory factor in the failure of chemotherapy. Concrete interpretation of P-glycoprotein (P-gp) substrate specificity, whether a substance is a substrate or an inhibitor, represents an important feature of a compound's pharmaceutical profiling in drug design and development. In this work, the P-gp substrate specificity of Maldi 531.2[M+H]+, a phenol ester from Aglaia loheri Blanco leaves was investigated. This study focuses on the effect of Maldi 531.2[M+H]+ on P-gp ATPase activity, which was examined by measuring the amount of inorganic phosphates (Pi) released as a result of ATP hydrolysis. To test the effects of Maldi 531.2[M+H]+ on MDR activit…

0301 basic medicinePharmacologybiologyChemistryStereochemistryStimulationPlant ScienceGeneral MedicineMultiple drug resistance03 medical and health sciences030104 developmental biology0302 clinical medicineNon-competitive inhibitionComplementary and alternative medicineATP hydrolysis030220 oncology & carcinogenesisDrug DiscoveryCancer cellmedicinebiology.proteinPiVerapamilmedicine.drugP-glycoproteinNatural Product Communications
researchProduct

Cytotoxic activity of medicinal plants of the Kakamega County (Kenya) against drug-sensitive and multidrug-resistant cancer cells

2018

Abstract Ethnopharmacological relevance The geographical location of Kakamega County proximal to the Kakamega Rain Forest in Kenya and its rich flora represents an interesting resource of traditional medicinal plants. The medicinal plants in the present study are traditionally used to treat cancer in Kakamega County as recorded in published literature. Aim of the study Due to multidrug resistance (MDR) and severe side effects of currently used drugs in clinical oncology, new candidate compounds are urgently required to improve treatment outcome. The present study explored the in vitro cytotoxic potential of 34 organic and 19 aqueous extracts of Kakamega medicinal plants towards sensitive an…

0301 basic medicinePhyllanthusCell SurvivalDrug resistancePharmacognosyInhibitory Concentration 5003 medical and health sciences0302 clinical medicineCell Line TumorOxazinesDrug DiscoveryHarunganaATP Binding Cassette Transporter Subfamily G Member 2HumansATP Binding Cassette Transporter Subfamily B Member 1Medicinal plantsMedicine African TraditionalPharmacologyPrunus africanaPlants MedicinalbiologyTraditional medicineBridelia micranthabiology.organism_classificationAntineoplastic Agents PhytogenicNeoplasm ProteinsErbB ReceptorsGene Expression Regulation NeoplasticMultiple drug resistance030104 developmental biologyXanthenesDrug Resistance Neoplasm030220 oncology & carcinogenesisDrug Therapy CombinationJournal of Ethnopharmacology
researchProduct

SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidr…

2019

Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-c…

0301 basic medicineProgrammed cell deathSERCALung NeoplasmsCell SurvivalAntineoplastic AgentsAutophagy-Related Protein 7Sarcoplasmic Reticulum Calcium-Transporting ATPases03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAdenosine TriphosphateCell Line TumorAutophagyAnimalsHumansATP Binding Cassette Transporter Subfamily B Member 1P-glycoproteinPharmacologybiologyDose-Response Relationship DrugChemistryAutophagyXenograft Model Antitumor AssaysDrug Resistance MultipleTriterpenesMultiple drug resistanceMice Inbred C57BL030104 developmental biologyCelastrolApoptosisDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer cellbiology.proteinCancer researchHepatocytesPentacyclic TriterpenesPharmacological research
researchProduct

Cancer stem cell-based models of colorectal cancer reveal molecular determinants of therapy resistance

2016

Abstract Colorectal cancer (CRC) therapy mainly relies on the use of conventional chemotherapeutic drugs combined, in a subset of patients, with epidermal growth factor receptor [EGFR]-targeting agents. Although CRC is considered a prototype of a cancer stem cell (CSC)-driven tumor, the effects of both conventional and targeted therapies on the CSC compartment are largely unknown. We have optimized a protocol for colorectal CSC isolation that allowed us to obtain CSC-enriched cultures from primary tumor specimens, with high efficiency. CSC isolation was followed by in vitro and in vivo validation, genetic characterization, and drug sensitivity analysis, thus generating panels of CSC lines w…

0301 basic medicineProteomicscancer stem cellsColorectal cancerDrug ResistanceMice SCIDAnti-EGFR therapy; Cancer stem cells; Cetuximab; Colorectal cancer; Proteomic arrays; Animals; Cells Cultured; Colorectal Neoplasms; Drug Resistance Neoplasm; Female; Gene Expression Profiling; Humans; Mice Inbred NOD; Mice SCID; Mice Transgenic; Microarray Analysis; Models Biological; Neoplastic Stem Cells; Protein Kinase Inhibitors; Proteomics; Signal Transduction; Developmental Biology; Cell BiologyTransgenicMiceMice Inbred NODModelsproteomic arrayscetuximabcell biologyEpidermal growth factor receptorCells CulturedCulturedCetuximabbiologyGeneral MedicinePrimary tumorNeoplastic Stem CellsFemaleSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratorioStem cellColorectal Neoplasmsmedicine.drugSignal TransductionCellsMice Transgeniccolorectal cancerSCIDModels Biological03 medical and health sciencesdevelopmental biologyProteomic arrayCancer stem cellIn vivoSettore MED/04 - PATOLOGIA GENERALEmedicineAnimalsHumansProtein Kinase InhibitorsSettore MED/06 - ONCOLOGIA MEDICAMicroarray analysis techniquesbusiness.industryCancer stem cellGene Expression Profilingmedicine.diseaseMicroarray AnalysisBiological030104 developmental biologyanti-EGFR therapyDrug Resistance Neoplasmanti-EGFR therapy; cancer stem cells; cetuximab; colorectal cancer; proteomic arrays; cell biology; developmental biologyImmunologyCancer researchbiology.proteinNeoplasmInbred NODbusiness
researchProduct

Exosomes as diagnostic and predictive biomarkers in lung cancer

2017

The concept of exosomes has evolved from be considered garbage bags to the demonstration that exosomes could play very interesting roles and functions, from biomarkers detection to the potential of work as drug delivery systems. It has been widely proved that exosomes can contain key molecules important for the tumour development. The current review summarizes the latest investigations developed in the field of predictive exosomal biomarkers. The microRNAs (miRNAs) are the more known molecules due to their amount inside the exosomes and the sensitivity of the techniques available for their study. However, exosomal proteins, RNA and DNA are becoming an interesting and more feasible field of …

0301 basic medicinePulmonary and Respiratory MedicineNon-small cell lung cancer (NSCLC)Review ArticleBioinformaticsExosomes03 medical and health sciencesliquid biopsies0302 clinical medicineLiquid biopsiemicroRNAmedicineLung cancerPredictive biomarkerdrug resistanceBiomarkers; Drug resistance; Exosomes; Liquid biopsies; Non-small cell lung cancer (NSCLC); Pulmonary and Respiratory Medicinebusiness.industrybiomarkersBiomarkermedicine.diseaseMicrovesiclesClinical PracticeExosomenon-small cell lung cancer (NSCLC)030104 developmental biologyTumour development030220 oncology & carcinogenesisDrug resistanceHuman medicinebusiness
researchProduct

Extra-Intestinal Fluoroquinolone-Resistant Escherichia coli Strains Isolated from Meat

2018

Extra-intestinal E. coli are emerging as a global threat due to their diffusion as opportunistic pathogens and, above all, to their wide set of antibiotic resistance determinants. There are still many gaps in our knowledge of their origin and spread pathways, although food animals have been adjudicated vehicles for passing mult-drug resistant bacteria to humans. This study analyzed 46 samples of meat purchased from retail stores in Palermo in order to obtain quinolone-resistant E. coli isolates. Strains were screened for their phylogenetic groups, ST131-associated single nucleotide polymorphisms (SNPs), and then typed by ERIC-PCR. Their set of virulence factors, namely, kpsMII, papA, sfaS, …

0301 basic medicineSettore MED/07 - Microbiologia E Microbiologia ClinicaMeatArticle SubjectVirulence Factors030106 microbiologyVirulencelcsh:MedicineSingle-nucleotide polymorphismDrug resistanceMicrobial Sensitivity TestsQuinolonesmedicine.disease_causePolymorphism Single NucleotideGeneral Biochemistry Genetics and Molecular BiologyVirulence factorPoultryMicrobiology03 medical and health sciencesAntibiotic resistanceDrug Resistance Multiple BacterialmedicineEscherichia coliAnimalsEscherichia coliEscherichia coli InfectionsGeneral Immunology and Microbiologybiologylcsh:RGeneral Medicinebiology.organism_classificationAnti-Bacterial AgentsMultiple drug resistanceIntestines030104 developmental biologyFood MicrobiologyE. coli ExPEC foodBacteriaResearch ArticleFluoroquinolonesPlasmids
researchProduct

Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone

2017

ABSTRACT : The global spread of Klebsiella pneumoniae producing Klebsiella pneumoniae carbapenemase (KPC) has been mainly associated with the dissemination of high-risk clones. In the last decade, hospital outbreaks involving KPC-producing K. pneumoniae have been predominantly attributed to isolates belonging to clonal group (CG) 258. However, results of recent epidemiological analysis indicate that KPC-producing sequence type (ST) 307, is emerging in different parts of the world and is a candidate to become a prevalent high-risk clone in the near future. Here we show that the ST307 genome encodes genetic features that may provide an advantage in adaptation to the hospital environment and t…

0301 basic medicineSettore MED/07 - Microbiologia E Microbiologia Clinicasiderophoreantibiotic resistancelong term survivalsequence analysisKlebsiella pneumoniaepolymerase chain reactionResponses to Human InterventionsDrug ResistanceGene TransferClone (cell biology)ST259bacterial proteinvirulence factorYersiniabactinGenomechemistry.chemical_compoundMicrobialPlasmidAntibioticsbacterial genomepathogenicitygenetics610 Medicine & healthgenome analysisCross InfectionMolecular EpidemiologyGenomeVirulencebiologydrug effectyersiniabactinBacterialDrug Resistance MicrobialGeneral MedicineKlebsiella infectionglycogen synthesisKlebsiella pneumoniaeEnglandItalyST307horizontal gene transferProteínas BacterianasResearch ArticleGene Transfer HorizontalVirulence FactorsSequence analysiscapsule030106 microbiologyVirulence610 Medicine & healthpulsed field gel electrophoresisColombiaCarbapenemase; siderophore; yersiniabactin; bacterial protein; beta lactamase; virulence factor antibiotic resistance; Article; bacterial strain; bacterial virulence; bacterium isolate; fimbria; genome analysis; glycogen synthesis; Klebsiella pneumoniae; long term survival; microbial diversity; nonhuman; plasmid; polymerase chain reaction; pulsed field gel electrophoresis; sequence analysis; whole genome sequencing; antibiotic resistance; bacterial genome; carbapenem-resistant Enterobacteriaceae; Colombia; cross infection; drug effect; England; genetic variation; genetics; horizontal gene transfer; human; Italy; Klebsiella infection; microbiology; molecular epidemiology; multilocus sequence typing; pathogenicity; virulence Bacterial Proteins; beta-Lactamases; Carbapenem-Resistant Enterobacteriaceae; Colombia; Cross Infection; Drug Resistance Microbial; England; Gene Transfer Horizontal; Genetic Variation; Genome Bacterial; Humans; Italy; Klebsiella Infections; Klebsiella pneumoniae; Molecular Epidemiology; Multilocus Sequence Typing; Virulence; Virulence Factors; Whole Genome SequencingArticlebeta-Lactamasesbeta lactamaseHorizontalMicrobiologyCarbapenemase03 medical and health sciencesAntibiotic resistanceBacterial ProteinsplasmidHumanshumanInfecciones por KlebsiellafimbrianonhumanWhole Genome Sequencingbacterial virulencebacterium isolatemicrobiologyGenetic Variationbacterial strainbiology.organism_classificationKlebsiella InfectionsEnterobacteriaceae Resistentes a los CarbapenémicosKPCCarbapenem-Resistant Enterobacteriaceae030104 developmental biologychemistrymicrobial diversityEpidemiología MolecularGenome BacterialWGSMultilocus Sequence Typing
researchProduct

Interactions of human P-glycoprotein transport substrates and inhibitors at the drug binding domain: Functional and molecular docking analyses

2015

Rhodamine 123 (R123) transport substrate sensitizes P-glycoprotein (P-gp) to inhibition by compound 2c (cis-cis) N,N-bis(cyclohexanolamine)aryl ester isomer in a concentration-dependent manner in human MDR1-gene transfected mouse T-lymphoma L5178 cells as shown previously. By contrast, epirubicin (EPI) concentration changes left unaltered 2c IC50 values of EPI efflux. To clarify this discrepancy, defined molecular docking (DMD) analyses of 12 N,N-bis(cyclohexanolamine)aryl esters, the highly flexible aryl ester analog 4, and several P-gp substrate/non-substrate inhibitors were performed on human P-gp drug- or nucleotide-binding domains (DBD or NBD). DMD measurements yielded lowest binding e…

0301 basic medicineStereochemistryCell Culture TechniquesCancer drug resistance; Molecular docking; NN-Bis(cyclohexanolamine)aryl ester; P-glycoproteinPlasma protein bindingP-glycoproteinTransfectionBiochemistryRhodamine 123Substrate Specificity03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineCell Line TumorAnimalsRhodamine 123ATP Binding Cassette Transporter Subfamily B Member 1Binding siteP-glycoproteinEpirubicinPharmacologyBinding SitesbiologyMolecular StructureArylEstersCancer drug resistanceNCyclohexanolsMolecular Docking SimulationProtein Transport030104 developmental biologychemistryDocking (molecular)030220 oncology & carcinogenesisMolecular dockingbiology.proteinN-Bis(cyclohexanolamine)aryl esterEffluxBinding domainProtein Binding
researchProduct

Exosome-mediated drug resistance in cancer: the near future is here.

2016

Drug resistance exerts a crucial role in several cancer treatments. Understanding the resistance mechanisms against different therapeutic agents can be helpful to determine the prognosis, but remains a tricky task. In this context, tumor-derived exosomes (TDEs) may give crucial answers about these resistance mechanisms. Exosomes are biological nanovesicles with an average size around 30–100 nm of diameter (Figure 1) that originate from the endocytic pathway by the inward budding of multivesicular bodies (MVB), and they function as cell-free messengers, involved in the cell–cell communication [Kowal et al. 2014]. It has been demonstrated that both cells in physiological and pathological cond…

0301 basic medicineTumor microenvironmentAngiogenesisEndocytic cycleContext (language use)Drug resistanceBiologylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenslcsh:RC254-282ExosomeMicrovesiclesCell biology03 medical and health sciencesEditorial030104 developmental biology0302 clinical medicineExosomes cancer drug resistanceOncologySettore BIO/13 - Biologia Applicata030220 oncology & carcinogenesismicroRNAImmunologyHuman medicine
researchProduct

Effect of Buthionine Sulfoximine on the Sensitivity to Doxorubicin of Parent and MDR Tumor Cell Lines

1994

We have studied the interaction of glutathione-depleting concentrations of buthionine sulfoximine (BSO) with the anti-proliferative activity of doxorubicin (DXR) in three tumor lines, the mouse B16 melanoma. Friend erythroleukemia and the human K562 leukemia, both as DXR-sensitive and-resistant (with typical multidrug resistance) variants. BSO significantly enhanced the DXR effects in the wild-type Friend and K562 leukemias, and especially in the drug-resistant subline of Friend leukemia. BSO did not modify DXR accumulation and retention in the latter clone. Moreover, neither BSO nor verapamil used alone completely reversed the resistance to DXR of this cell line; their combination was more…

0301 basic medicineVincristineFriend leukemia030106 microbiologyPharmacologyMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineMethionine Sulfoximinehemic and lymphatic diseasesTumor Cells CulturedmedicineAnimalsHumansPharmacology (medical)DoxorubicinButhionine sulfoximineButhionine SulfoximinePharmacologyChemistryDrug SynergismGlutathionemedicine.diseaseGlutathioneDrug Resistance MultipleMultiple drug resistanceLeukemiaInfectious DiseasesOncologyDoxorubicinVincristine030220 oncology & carcinogenesismedicine.drugK562 cellsJournal of Chemotherapy
researchProduct