Search results for " Duration"
showing 10 items of 221 documents
Broadband tuning of a long-cavity all-fiber mode locked Thulium-doped fiber laser using an acousto-optic bandpass filter
2019
A long-cavity passively mode-locked thulium-doped all-fiber laser is reported incorporating a tapered acousto-optic tunable bandpass filter (AOTBF). The operation of the AOTBF relies on the intermodal coupling between core and cladding modes when a flexural acoustic wave propagates along an 80-microm tapered fiber. The filter works in transmission and exhibits a 3-dB bandwidth of 9.02 nm with an insertion loss of 3.4 dB. The laser supports ultrashort pulse generation at a low repetition rate of 784.93 kHz. Optical pulses with 2.43 nm of optical bandwidth and 2.1 ps pulse duration were obtained in a broad tuning range from 1824.77 to 1905.16 nm.
From Above Threshold Ionization to Statistical Electron Emission: The Laser Pulse-Duration Dependence ofC60Photoelectron Spectra
2000
The photoelectron spectra of C60 ionized using a 790 nm laser with pulse durations varying from 25 fs to 5 ps have been determined. For 25 fs pulses, in the absence of fragmentation, the ionization mechanism is direct multiphoton ionization with clear observation of above threshold ionization. As the pulse duration is increased, this becomes dominated by a statistical ionization due to equilibration among the electronic degrees of freedom. For pulse durations on the order of a ps coupling to the vibrational degrees of freedom occurs and the well-known phenomenon of delayed (ms) ionization is observed.
Growth of titanium oxynitride layers by short pulsed Nd:YAG laser treatment of Ti plates: Influence of the cumulated laser fluence.
2009
International audience; Titanium oxynitride layerswere formed by surface laser treatment of Ti plates in air using a Nd:YAG laser source of short pulse duration about 5 ns. The cumulated laser fluence was varied in the 100–1200 J cm2 range and its influence on the composition and the structure of the formed layers was studied by different characterization techniques providing physico-chemical and structural information. It was shown that the laser treatment induces the insertion of light elements as O, N and C in the formed layer with the amount increasing with the laser fluence. The in-depth composition of the layers and the co-existence of different phases were also studied. The way in wh…
The effects of linearly increasing flip angles on 3D inflow MR angiography
1994
As recently demonstrated, spin saturation effects in 3D time-of-flight (TOF) MR angiography (MRA) can be reduced by using RF pulses with linearly increasing flip angles (ramp pulses) in the main direction of flow. We developed a model for calculating the signal distribution of proton flow within the excitation volume (slab) for different ramp slopes and compared the results with the measured distribution for the lower-leg arteries. The ramp pulses were generated using the Fourier transformation of the desired excitation profiles. With a bandwidth of 6 kHz and a pulse length of 2.56 ms satisfactory ramps with variable slopes were generated and applied in a standard flow-compensated 3D FISP s…
Mach-Zehnder interferometer implementation for thermo-optical and Kerr effect study
2018
Scientific Research Project for Students and Young Researchers Nr. SJZ/2016/10; National Research Program “Multifunctional Materials and Composites, Photonics and Nanotechnology” (IMIS2) project “Photonics and materials for photonics”.
Origin of Kerr effect: investigation of solutions by polarization dependent Z-scan
2020
This material is based upon work supported by the ERDF 1.1.1.1 activity project No. 1.1.1.1/16/A/046 “Application assessment of novel organic materials by prototyping of photonic devices”.
Time-resolved cathodoluminescence spectroscopy of YAG and YAG:Ce3+ phosphors
2019
Abstract The phosphor powders, both undoped and Ce3+ doped with different concentration Y3Al5O12 (YAG), were synthesized by the solid-state reaction method with addition of BaF2 flux. SEM and XRD characterization of the samples were performed. The spectral and luminescence decay kinetic characteristics under the electron beam irradiation with nano- and picoseconds pulse duration and the electron energies of 250 keV and 55 keV were studied, respectively. Two bands in the cathodoluminescence spectrum of YAG:Ce3+ phosphors were observed with maxima at 2.19 ± 0.05 and 2.4 eV. The intensity ratio of these two bands depends on the electron energy and the duration of the excitation pulse. Instead,…
Laser heating and ablation at high repetition rate in thermal confinement regime
2006
International audience; Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and l = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repe…
Flashlamp-pumped Ti:Sapphire laser: Influence of the rod figure of merit and Ti3+ concentration
1994
A flashlamp-pumped Ti:Sapphire laser is tested with rods of various Figures of Merit (FOM from 100 to 800) and Ti3+ concentrations (0.1 and 0.15% by weight) and we measured the laser energy dependence as a function of these parameters. Output energies above 2 J are obtained without dye converter, leading to a 1.8% overall efficiency and a 2.2% slope efficiency. The effects of pump pulse duration by variation of the discharge capacitance are also monitored.
High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere: The study of sputtering process and AZO films
2019
Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/4 realised at the Institute of Solid State Physics, University of Latvia is greatly acknowledged.