Search results for " END"

showing 10 items of 4885 documents

Staying alive on an active volcano: 80 years population dynamics of Cytisus aeolicus (Fabaceae) from Stromboli (Aeolian Islands, Italy)

2020

Abstract Cytisus aeolicus is a narrow endemic species restricted to the Aeolian archipelago (SE Tyrrhenian Sea, Italy) and it is one of the most evolutionarily isolated plants in the Mediterranean flora. Historical and literature data suggest that both metapopulations and isolated individuals of C. aeolicus are gradually shrinking. Field investigations and drone images demonstrate that the C. aeolicus metapopulation from Stromboli experienced a strikingly fast increase during the last decades. As of 2019, more than 7000 ± 3000 mature individuals occur on Stromboli, i.e. 14 to 20 times more than those counted during the last census, 25 years ago. The diachronic analysis of aerial photos conc…

0106 biological sciencesMediterranean climateIUCN risk assessmentPopulationMetapopulationConservation010502 geochemistry & geophysics010603 evolutionary biology01 natural sciencesConservation Endemic species Pollen morphology Germination rate Growth rate IUCN risk assessmentlcsh:QH540-549.5IUCN Red ListEndemismeducation0105 earth and related environmental scienceseducation.field_of_studygeography.geographical_feature_categoryExtinctionGrowth rateEcologyconservation; endemic species; germination rate; growth rate; IUCN risk assessment; pollen morphologyEcologyEcological ModelingStrombolian eruptionGermination ratePollen morphologyGeographyVolcanoSettore BIO/03 - Botanica Ambientale E ApplicataEndemic specieslcsh:Ecology
researchProduct

Molecular evidence supports simultaneous association of the achlorophyllous orchid Chamaegastrodia inverta with ectomycorrhizal Ceratobasidiaceae and…

2020

Abstract Background Achlorophyllous orchids are mycoheterotrophic plants, which lack photosynthetic ability and associate with fungi to acquire carbon from different environmental sources. In tropical latitudes, achlorophyllous forest orchids show a preference to establish mycorrhizal relationships with saprotrophic fungi. However, a few of them have been recently found to associate with ectomycorrhizal fungi and there is still much to be learned about the identity of fungi associated with tropical orchids. The present study focused on mycorrhizal diversity in the achlorophyllous orchid C. inverta, an endangered species, which is endemic to southern China. The aim of this work was to identi…

0106 biological sciencesMicrobiology (medical)ChinaAchlorophyllous orchidslcsh:QR1-502HyphaeCeratobasidiaceaePlant-fungus interactions01 natural sciencesMicrobiologyPlant Rootslcsh:Microbiology03 medical and health sciencesOrchid mycorrhizaSymbiosisAscomycotaMycologyOrchid mycorrhizaMycorrhizaeBotanyEctomycorrhizal fungiRussulaDNA FungalOrchidaceaeSymbiosisMyceliumPhylogeny030304 developmental biology0303 health sciencesbiologySettore BIO/02 - Botanica SistematicaBasidiomycotaEndangered SpeciesCeratobasidiaceaeChaetomiumbiology.organism_classificationRussulaMycoheterotrophySeedlingsAchlorophyllous orchids Ceratobasidiaceae Ectomycorrhizal fungi Endangered species Orchid mycorrhiza Plant-fungus interactions Mycoheterotrophy RussulaSettore BIO/03 - Botanica Ambientale E ApplicataRussulaceae010606 plant biology & botanyResearch ArticleBMC Microbiology
researchProduct

Iodine Biofortification Counters Micronutrient Deficiency and Improve Functional Quality of Open Field Grown Curly Endive

2021

Human iodine (I) shortage disorders are documented as an imperative world-wide health issue for a great number of people. The World Health Organization (WHO) recommends I consumption through ingestion of seafood and biofortified food such as vegetables. The current work was carried out to appraise the effects of different I concentrations (0, 50, 250, and 500 mg L−1), supplied via foliar spray on curly endive grown in the fall or spring–summer season. Head fresh weight, stem diameter, head height, and soluble solid content (SSC) were negatively correlated to I dosage. The highest head dry matter content was recorded in plants supplied with 250 mg I L−1, both in the fall and spring–summer se…

0106 biological sciencesMicronutrient deficiencyBiofortificationGrowing seasonchemistry.chemical_elementPlant ScienceHorticultureBiologylcsh:Plant cultureIodine01 natural sciencesWorld healthFunctional compoundIngestionDry matter<i>Cichorium endivia</i> L. var. <i>crispum</i> Hegilcsh:SB1-1110SugarCichorium endivia L. var. crispum Hegigrowing seasonfunctional compoundsfood and beverages04 agricultural and veterinary sciencesAscorbic acidyieldHorticulturechemistrysugars040103 agronomy & agriculture0401 agriculture forestry and fisheriesiodine concentration010606 plant biology & botanymineral profileHorticulturae
researchProduct

Experimental climate warming alters the relationship between fungal root symbiosis and Sphagnum litter phenolics in two peatland microhabitats

2017

International audience; Belowground interactions between plants and microorganisms are involved in numerous ecosystems processes such as carbon and nutrient cycling. Understanding their responses to on-going climate warming is thus of paramount importance to better predict future ecosystem functioning. We hypothesized that climate warming alters the interactions between Sphagnum litter phenolics and the fungal root symbiosis of the Ericale plant Andromeda polifolia in a Jura mountain peatland (France). We initiate a climate warming treatment (+1°C) in April 2008 in two microhabitats (lawns and hummocks). We measured polyphenolic contents, mycorrhizal and dark septate endophyte (DSE) root co…

0106 biological sciencesPeatSoil SciencephenoloxidaseperoxidaseDark septate endophyte01 natural sciencesMicrobiologySphagnum[ SDE ] Environmental Sciencesdark septate endophyteSymbiosisBotanyEcosystembryophyteRhizospherebiologyEcologyGlobal warmingplant secondary metabolites (PSM)04 agricultural and veterinary sciences15. Life on landbiology.organism_classification13. Climate actionericoid mycorrhizae[SDE]Environmental Sciences040103 agronomy & agricultureLitter0401 agriculture forestry and fisheries010606 plant biology & botany
researchProduct

Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System

2020

Imminent necessity for eco-friendly and low-cost substitutes to peat is a defiance in the soilless plant cultivation systems. Wood biochar could entirely or partly substitute peat as a plant growing constituent to produce vegetables. Nevertheless, knowledge concerning potential plant performance of leafy green vegetables grown on wood biochar is restricted. The present study assessed the main physicochemical traits of various growing media constituted by decreasing the content of peat and by increasing the percentages of poplar wood biochar. Yield, nutritional and functional properties of curly endive plants cultivated in a protected environment were also tested. Biochar was pyrolyzed from …

0106 biological sciencesPeatpyrolysis temperatureSettore AGR/13 - Chimica AgrariaSettore AGR/04 - Orticoltura E Floricolturalcsh:Technologyquality traits01 natural scienceslcsh:Chemistrysoilless cultivationsubstrate mixtureBiocharGeneral Materials ScienceDry matterCichorium endivia L. var. crispumParticle densitylcsh:QH301-705.5InstrumentationLeafysubstrate mixturesFluid Flow and Transfer Processespoplar wood biochar; pyrolysis temperature; Cichorium endivia L. var. crispum; soilless cultivation; substrate mixtures; quality traitslcsh:TChemistryProcess Chemistry and TechnologyGeneral Engineeringpoplar wood biochar04 agricultural and veterinary sciencesAscorbic acidBulk densitylcsh:QC1-999Computer Science ApplicationsHorticulture<i>cichorium endivia</i> l. var. <i>crispum</i>lcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040040103 agronomy & agriculture0401 agriculture forestry and fisherieslcsh:Engineering (General). Civil engineering (General)Pyrolysislcsh:Physics010606 plant biology & botanyApplied Sciences
researchProduct

Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls.

2013

Abstract: Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. X…

0106 biological sciencesPhysiologyArabidopsisPlant ScienceBiologyReal-Time Polymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health sciencesCell WallGene Expression Regulation PlantTensile StrengthArabidopsisArabidopsis thalianaXyloglucan:xyloglucosyl transferaseBiology030304 developmental biology0303 health sciencesAgriculturafungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylasebiology.organism_classificationHypocotylBiochemistryEtiolationBiophysics010606 plant biology & botany
researchProduct

Xyloglucan endotransglucosylase and cell wall extensibility

2011

Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl…

0106 biological sciencesPhysiologyBiologíaPlant ScienceBiologyPolysaccharidePolymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health scienceschemistry.chemical_compoundTransformation GeneticSolanum lycopersicumCell WallSpectroscopy Fourier Transform InfraredXyloglucan:xyloglucosyl transferaseGenetically modified tomatoPlant Proteins030304 developmental biologychemistry.chemical_classification0303 health sciencesfungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylaseBlotting NorthernXyloglucanchemistryBiochemistrySpectrometry Mass Matrix-Assisted Laser Desorption-IonizationAgronomy and Crop Science010606 plant biology & botany
researchProduct

Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking.

2021

Abstract The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere wi…

0106 biological sciencesPhysiologyEndocytic cycleArabidopsisBREFELDIN-APlant Science01 natural sciencesPROTEIN TRAFFICKINGNaphthaleneacetic AcidsPlant Growth RegulatorsGOLGI-APPARATUSheterocyclic compoundsInternalizationResearch Articlesmedia_commonchemistry.chemical_classification0303 health sciencesAcademicSubjects/SCI01270biologyAcademicSubjects/SCI02288AcademicSubjects/SCI02287AcademicSubjects/SCI02286food and beveragesCorrigendaEndocytosisCell biologyProtein TransportMEMBRANE TRAFFICKINGIntracellulartrans-Golgi NetworkGNOM ARF-GEFAcademicSubjects/SCI01280media_common.quotation_subjectEndocytosisClathrin03 medical and health sciencesAuxinGeneticsEndomembrane systemVACUOLAR TRAFFICKINGPLANT030304 developmental biologyIndoleacetic AcidsArabidopsis ProteinsMEDIATES ENDOCYTOSISCell MembraneBiology and Life SciencesTransporterTRANSPORTchemistrybiology.proteinARABIDOPSIS-THALIANA010606 plant biology & botanyPlant physiology
researchProduct

The Plant Defense Elicitor Cryptogein Stimulates Clathrin-Mediated Endocytosis Correlated with Reactive Oxygen Species Production in Bright Yellow-2 …

2008

Abstract The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To…

0106 biological sciencesPhysiologymedia_common.quotation_subjectPlant ScienceEndocytosis01 natural sciencesClathrin[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants geneticsCell membrane03 medical and health sciencesGeneticsmedicineDEFENSE DES PLANTESInternalization030304 developmental biologymedia_common0303 health sciencesNADPH oxidasebiologyReceptor-mediated endocytosisFORMES ACTIVES DE L'OXYGENECell biologyElicitormedicine.anatomical_structureREACTIONS DE DEFENSEbiology.proteinSignal transduction010606 plant biology & botanyPlant Physiology
researchProduct

Interactions between dark septate endophytes, ectomycorrhizal fungi and root pathogens in vitro

2019

ABSTRACT Dark septate endophytes (DSEs) are widely distributed worldwide and can promote plant growth. Therefore, they are considered potentially important plant allies, especially in stressful environments. Previous studies have reported that DSEs cohabit roots with other microorganisms such as ectomycorrhizal (ECM), endophytic and pathogenic fungi/oomycetes. However, interactions between different DSE species have not yet been reported, and studies on the interactions between DSEs and other fungi are scarce. Using a simple and reproducible pairwise growth assay in vitro, we studied the synergistic/antagonistic interactions between eight DSEs, two ECM fungi and three root pathogens. Most o…

0106 biological sciencesPhytophthora citricolaectomycorrhizal fungiMicroorganismroot pathogenic fungiPhialophora mustea[SDV]Life Sciences [q-bio]Heterobasidion annosumBiological pest controlPhialocephala fortiniiContext (language use)FungusDark septate endophytePlant Roots01 natural sciencesMicrobiology03 medical and health sciencesCadophora spMycorrhizaePhialophoraBotanyEndophytesGeneticsSymbiosisMolecular Biology030304 developmental biology2. Zero hunger0303 health sciencesLeptodontidium spbiologyFungifood and beveragesDark septate endophyte15. Life on landbiology.organism_classificationPhenotype010606 plant biology & botany
researchProduct